Genome-Wide Identification of Regulatory RNAs in the Human Pathogen Clostridium difficile

Clostridium difficile is an emergent pathogen, and the most common cause of nosocomial diarrhea. In an effort to understand the role of small noncoding RNAs (sRNAs) in C. difficile physiology and pathogenesis, we used an in silico approach to identify 511 sRNA candidates in both intergenic and coding regions. In parallel, RNA–seq and differential 5′-end RNA–seq were used for global identification of C. difficile sRNAs and their transcriptional start sites at three different growth conditions (exponential growth phase, stationary phase, and starvation). This global experimental approach identified 251 putative regulatory sRNAs including 94 potential trans riboregulators located in intergenic regions, 91 cis-antisense RNAs, and 66 riboswitches. Expression of 35 sRNAs was confirmed by gene-specific experimental approaches. Some sRNAs, including an antisense RNA that may be involved in control of C. difficile autolytic activity, showed growth phase-dependent expression profiles. Expression of each of 16 predicted c-di-GMP-responsive riboswitches was observed, and experimental evidence for their regulatory role in coordinated control of motility and biofilm formation was obtained. Finally, we detected abundant sRNAs encoded by multiple C. difficile CRISPR loci. These RNAs may be important for C. difficile survival in bacteriophage-rich gut communities. Altogether, this first experimental genome-wide identification of C. difficile sRNAs provides a firm basis for future RNome characterization and identification of molecular mechanisms of sRNA–based regulation of gene expression in this emergent enteropathogen.

[1]  Emmanuelle Charpentier,et al.  Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. , 2012, Virology.

[2]  D. Serruto,et al.  Multiple Factors Modulate Biofilm Formation by the Anaerobic Pathogen Clostridium difficile , 2012, Journal of bacteriology.

[3]  Emanuel Barth,et al.  SR1—a small RNA with two remarkably conserved functions , 2012, Nucleic acids research.

[4]  I. Tirosh,et al.  CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome , 2012, Genome research.

[5]  Rolf Backofen,et al.  Characterization of CRISPR RNA processing in Clostridium thermocellum and Methanococcus maripaludis , 2012, Nucleic acids research.

[6]  U. Römling Cyclic di-GMP, an established secondary messenger still speeding up. , 2012, Environmental microbiology.

[7]  S. Brantl Acting antisense: plasmid- and chromosome-encoded sRNAs from Gram-positive bacteria. , 2012, Future microbiology.

[8]  Jeroen Raes,et al.  A metagenomic insight into our gut's microbiome , 2012, Gut.

[9]  C. Waters,et al.  Cyclic Diguanylate Inversely Regulates Motility and Aggregation in Clostridium difficile , 2012, Journal of bacteriology.

[10]  C. Buchrieser,et al.  Deep sequencing defines the transcriptional map of L. pneumophila and identifies growth phase-dependent regulated ncRNAs implicated in virulence , 2012, RNA biology.

[11]  Á. Zaballos,et al.  Identification of 88 regulatory small RNAs in the TIGR4 strain of the human pathogen Streptococcus pneumoniae. , 2012, RNA.

[12]  M. Nowrousian,et al.  Deep sequencing uncovers numerous small RNAs on all four replicons of the plant pathogen Agrobacterium tumefaciens , 2012, RNA biology.

[13]  Joshua R. Elmore,et al.  Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. , 2012, Molecular cell.

[14]  P. Trieu-Cuot,et al.  An in silico model for identification of small RNAs in whole bacterial genomes: characterization of antisense RNAs in pathogenic Escherichia coli and Streptococcus agalactiae strains , 2011, Nucleic acids research.

[15]  R. Barrangou,et al.  CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. , 2011, Annual review of genetics.

[16]  R. Breaker,et al.  Mechanism for gene control by a natural allosteric group I ribozyme. , 2011, RNA.

[17]  C. Médigue,et al.  Reannotation of the genome sequence of Clostridium difficile strain 630. , 2011, Journal of medical microbiology.

[18]  J. Vogel,et al.  Hfq and its constellation of RNA , 2011, Nature Reviews Microbiology.

[19]  Peter F. Stadler,et al.  RNApredator: fast accessibility-based prediction of sRNA targets , 2011, Nucleic Acids Res..

[20]  N. Fairweather,et al.  Clostridium difficile Has Two Parallel and Essential Sec Secretion Systems* , 2011, The Journal of Biological Chemistry.

[21]  Stan J. J. Brouns,et al.  Evolution and classification of the CRISPR–Cas systems , 2011, Nature Reviews Microbiology.

[22]  I. Martin-Verstraete,et al.  The Key Sigma Factor of Transition Phase, SigH, Controls Sporulation, Metabolism, and Virulence Factor Expression in Clostridium difficile , 2011, Journal of bacteriology.

[23]  G. Shaw,et al.  Genetic evidence for involvement of the alternative sigma factor SigI in controlling expression of the cell wall hydrolase gene lytE and contribution of LytE to heat survival of Bacillus subtilis , 2011, Archives of Microbiology.

[24]  D. Mathews,et al.  Deep sequencing-based identification of small non-coding RNAs in Streptomyces coelicolor , 2011, RNA biology.

[25]  G. Storz,et al.  An expanding universe of small proteins. , 2011, Current opinion in microbiology.

[26]  V. Burrus,et al.  c-di-GMP Turn-Over in Clostridium difficile Is Controlled by a Plethora of Diguanylate Cyclases and Phosphodiesterases , 2011, PLoS genetics.

[27]  G. Storz,et al.  RNase III participates in GadY-dependent cleavage of the gadX-gadW mRNA. , 2011, Journal of molecular biology.

[28]  J. Vogel,et al.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III , 2011, Nature.

[29]  E. Papoutsakis,et al.  Small RNAs in the Genus Clostridium , 2011, mBio.

[30]  Jörgen Johansson,et al.  RNAs: regulators of bacterial virulence , 2010, Nature Reviews Microbiology.

[31]  R. Hengge Cyclic-di-GMP Reaches Out into the Bacterial RNA World , 2010, Science Signaling.

[32]  G. Storz,et al.  Bacterial antisense RNAs: how many are there, and what are they doing? , 2010, Annual review of genetics.

[33]  N. Thomson,et al.  Studying bacterial transcriptomes using RNA-seq , 2010, Current opinion in microbiology.

[34]  Marko Djordjevic,et al.  Transcription, processing and function of CRISPR cassettes in Escherichia coli , 2010, Molecular microbiology.

[35]  Kouji Nakamura,et al.  Stabilization of Clostridium perfringens collagenase mRNA by VR‐RNA‐dependent cleavage in 5′ leader sequence , 2010, Molecular microbiology.

[36]  Zasha Weinberg,et al.  An Allosteric Self-Splicing Ribozyme Triggered by a Bacterial Second Messenger , 2010, Science.

[37]  A. Sonenshein,et al.  Integration of Metabolism and Virulence by Clostridium difficile CodY , 2010, Journal of bacteriology.

[38]  J. Weese,et al.  Evaluation of candidate reference genes in Clostridium difficile for gene expression normalization. , 2010, Anaerobe.

[39]  J. Vogel,et al.  Regulatory RNA in bacterial pathogens. , 2010, Cell host & microbe.

[40]  A. Nakane,et al.  Virulence factor p60 of Listeria monocytogenes modulates innate immunity by inducing tumor necrosis factor alpha. , 2010, FEMS immunology and medical microbiology.

[41]  Rolf Backofen,et al.  Freiburg RNA Tools: a web server integrating IntaRNA, ExpaRNA and LocARNA , 2010, Nucleic Acids Res..

[42]  S. Engelmann,et al.  Comparative genome‐wide analysis of small RNAs of major Gram‐positive pathogens: from identification to application , 2010, Microbial biotechnology.

[43]  T. Henkin,et al.  The T box mechanism: tRNA as a regulatory molecule , 2010, FEBS letters.

[44]  J. Vogel,et al.  Activation of gene expression by small RNA. , 2009, Current opinion in microbiology.

[45]  H. Putzer,et al.  RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis , 2009, The EMBO journal.

[46]  P. François,et al.  A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation , 2009, Nucleic acids research.

[47]  M. Quail,et al.  Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium , 2009, Genome Biology.

[48]  R. Lewis,et al.  Characterization of the Sporulation Initiation Pathway of Clostridium difficile and Its Role in Toxin Production , 2009, Journal of bacteriology.

[49]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[50]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[51]  I. Poilane,et al.  New trends in Clostridium difficile virulence and pathogenesis. , 2009, International journal of antimicrobial agents.

[52]  G. Storz,et al.  Regulatory RNAs in Bacteria , 2009, Cell.

[53]  Robert D. Finn,et al.  Rfam: updates to the RNA families database , 2008, Nucleic Acids Res..

[54]  P. Burguière,et al.  S-box and T-box riboswitches and antisense RNA control a sulfur metabolic operon of Clostridium acetobutylicum , 2008, Nucleic acids research.

[55]  M. Livny,et al.  High-Throughput, Kingdom-Wide Prediction and Annotation of Bacterial Non-Coding RNAs , 2008, PloS one.

[56]  R. Breaker,et al.  Riboswitches in Eubacteria Sense the Second Messenger Cyclic Di-GMP , 2008, Science.

[57]  B. Dupuy,et al.  Clostridium difficile toxin synthesis is negatively regulated by TcdC. , 2008, Journal of medical microbiology.

[58]  M. Gelfand,et al.  Comparative genomic analysis of T-box regulatory systems in bacteria. , 2008, RNA.

[59]  V. Kunin,et al.  CRISPR — a widespread system that provides acquired resistance against phages in bacteria and archaea , 2008, Nature Reviews Microbiology.

[60]  B. Felden,et al.  Proteins that interact with bacterial small RNA regulators. , 2007, FEMS microbiology reviews.

[61]  Ibtissem Grissa,et al.  The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats , 2007, BMC Bioinformatics.

[62]  S. Kathariou,et al.  A P60 mutant of Listeria monocytogenes is impaired in its ability to cause infection in intragastrically inoculated mice. , 2007, Microbial pathogenesis.

[63]  S. Brantl Regulatory mechanisms employed by cis-encoded antisense RNAs. , 2007, Current opinion in microbiology.

[64]  K. Wassarman 6S RNA: a small RNA regulator of transcription. , 2007, Current opinion in microbiology.

[65]  J. Hinds,et al.  Construction and analysis of chromosomal Clostridium difficile mutants , 2006, Molecular microbiology.

[66]  Julian Parkhill,et al.  The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome , 2006, Nature Genetics.

[67]  G. Storz,et al.  Target prediction for small, noncoding RNAs in bacteria , 2006, Nucleic acids research.

[68]  S. Altman,et al.  RNase P cleaves transient structures in some riboswitches. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  W. L. Ruzzo,et al.  6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. , 2005, RNA.

[70]  O. Pellegrini,et al.  Ribonucleases J1 and J2: two novel endoribonucleases in B.subtilis with functional homology to E.coli RNase E , 2005, Nucleic acids research.

[71]  K. Wassarman,et al.  A highly conserved 6S RNA structure is required for regulation of transcription , 2005, Nature Structural &Molecular Biology.

[72]  M. Gelfand,et al.  Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? , 2003, Nucleic acids research.

[73]  Michael Zuker,et al.  Mfold web server for nucleic acid folding and hybridization prediction , 2003, Nucleic Acids Res..

[74]  Kayo Okumura,et al.  The VirR/VirS regulatory cascade affects transcription of plasmid-encoded putative virulence genes in Clostridium perfringens strain 13. , 2003, FEMS microbiology letters.

[75]  H. Margalit,et al.  A survey of small RNA-encoding genes in Escherichia coli. , 2003, Nucleic acids research.

[76]  H. Hayashi,et al.  Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins , 2002, Molecular microbiology.

[77]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[78]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[79]  P. Bourlioux,et al.  Clostridium difficile Cell Attachment Is Modified by Environmental Factors , 1999, Applied and Environmental Microbiology.

[80]  D. Karamata,et al.  The lytE Gene of Bacillus subtilis 168 Encodes a Cell Wall Hydrolase , 1998, Journal of bacteriology.

[81]  A. Sonenshein,et al.  Regulated transcription of Clostridium difficile toxin genes , 1998, Molecular microbiology.

[82]  B. Stillman,et al.  Cold Spring Harbor Laboratory , 1995, Molecular medicine.

[83]  M. Mann,et al.  Glucosylation of Rho proteins by Clostridium difficile toxin B , 1995, Nature.

[84]  R. Roberts,et al.  Relapse of antibiotic associated colitis: endogenous persistence of Clostridium difficile during vancomycin therapy. , 1983, Gut.

[85]  B. Simmons,et al.  A single-base resolution map of an archaeal transcriptome. , 2010, Genome research.

[86]  R. Sorek,et al.  Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity , 2010, Nature Reviews Genetics.

[87]  P. Romby,et al.  An overview of RNAs with regulatory functions in gram-positive bacteria , 2009, Cellular and Molecular Life Sciences.

[88]  E. Nudler,et al.  The riboswitch control of bacterial metabolism. , 2004, Trends in biochemical sciences.

[89]  M. Gelfand,et al.  Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. , 2004, Nucleic acids research.