The electrostatic potential: an overview

The electrostatic potential V(r) that is created by a system of nuclei and electrons is formulated directly from Coulomb's law and is a physical observable, which can be determined both experimentally and computationally. When V(r) is evaluated in the outer regions of a molecule, it shows how the latter is ‘seen’ by an approaching reactant, and thus is a useful guide to the molecule's reactive behavior, especially in noncovalent interactions. However, V(r) is a fundamental property of a system, the significance of which goes beyond its role in reactivity. For example, the energy of an atom or molecule can be expressed rigorously in terms of the electrostatic potentials at its nuclei. These and other features of V(r) are discussed in this overview. © 2011 John Wiley & Sons, Ltd. WIREs Comput Mol Sci 2011 1 153‐163 DOI: 10.1002/wcms.19

[1]  Timothy Clark,et al.  Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. , 2010, Physical chemistry chemical physics : PCCP.

[2]  Peter Politzer,et al.  Molecular Electrostatic Potentials and Chemical Reactivity , 2007 .

[3]  Peter Politzer,et al.  A predicted new type of directional noncovalent interaction , 2007 .

[4]  Porras,et al.  Atomic charge density at the nucleus and inequalities among radial expectation values. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[5]  J. Dunitz,et al.  Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles , 1977 .

[6]  Michelle Francl,et al.  Polarization corrections to electrostatic potentials , 1985 .

[7]  J. Leszczynski,et al.  Nature of X-H+δ···-δH-Y Dihydrogen Bonds and X-H···σ Interactions , 2004 .

[8]  P. Politzer,et al.  Approximate radii for singly negative ions of 3d, 4d, and 5d metal atoms , 1989 .

[9]  Pierangelo Metrangolo,et al.  Halogen bonding based recognition processes: a world parallel to hydrogen bonding. , 2005, Accounts of chemical research.

[10]  Peter Politzer,et al.  Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors , 2007, Journal of molecular modeling.

[11]  Jacopo Tomasi,et al.  Electronic Molecular Structure, Reactivity and Intermolecular Forces: An Euristic Interpretation by Means of Electrostatic Molecular Potentials , 1978 .

[12]  Peter Politzer,et al.  Electrostatic potentials and covalent radii , 2003, J. Comput. Chem..

[13]  Thomas J. Richardson,et al.  Unconventional Hydrogen Bonds: Intermolecular B-H.cntdot..cntdot..cntdot.H-N Interactions , 1995 .

[14]  J. Murray,et al.  Statistical analysis of the molecular surface electrostatic potential: an approach to describing noncovalent interactions in condensed phases , 1998 .

[15]  J. Murray,et al.  σ-hole bonding: molecules containing group VI atoms , 2007 .

[16]  F. Escudero,et al.  Atoms in molecules , 1982 .

[17]  Horst Köppel,et al.  Theoretical investigations on chalcogen-chalcogen interactions: what makes these nonbonded interactions bonding? , 2006, Journal of the American Chemical Society.

[18]  J M Blaney,et al.  Electrostatic potential molecular surfaces. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Murray,et al.  The unique role of the nitro group in intramolecular interactions: chloronitromethanes , 2010 .

[20]  M. L. Connolly Molecular Surface and Volume , 2002 .

[21]  Qishi Du,et al.  Derivation of fused‐sphere molecular surfaces from properties of the electrostatic potential distribution , 1996 .

[22]  Peter Politzer,et al.  The complementary roles of molecular surface electrostatic potentials and average local ionization energies with respect to electrophilic processes , 2002 .

[23]  Cheng Chang,et al.  Properties of atoms in molecules: atomic volumes , 1987 .

[24]  Peter Politzer,et al.  Directional tendencies of halogen and hydrogen bonds , 2010 .

[25]  Harel Weinstein,et al.  A misconception concerning the electronic density distribution of an atom , 1975 .

[26]  Shridhar R. Gadre,et al.  Maximal and minimal characteristics of molecular electrostatic potentials , 1990 .

[27]  H. Villar,et al.  Molecular polarization maps as a tool for studies of intermolecular interactions and chemical reactivity. , 1994, Journal of molecular graphics.

[28]  Kenneth B. Wiberg,et al.  Comparison of atomic charges derived via different procedures , 1993, J. Comput. Chem..

[29]  P. Politzer,et al.  Characteristic features of the electrostatic potentials of singly negative monoatomic ions , 1989 .

[30]  M. Leboeuf,et al.  Topological analysis of the molecular electrostatic potential , 1999 .

[31]  Otilia Mó,et al.  Influence of polarization functions on molecular electrostatic potentials , 1978 .

[32]  J. Murray,et al.  The Electrostatic Potential as a Guide to Molecular Interactive Behavior , 2009 .

[33]  J. Murray,et al.  Average local ionization energy: A review , 2010, Journal of molecular modeling.

[34]  J. Murray,et al.  Computational prediction of condensed phase properties from statistical characterization of molecular surface electrostatic potentials , 2001 .

[35]  Timothy Clark,et al.  Halogen bonding: the σ-hole , 2007 .

[36]  Corradi,et al.  Halogen Bonding versus Hydrogen Bonding in Driving Self-Assembly Processes Perfluorocarbon-hydrocarbon self-assembly, part IX. This work was supported by MURST (Cofinanziamento '99) and EU (COST-D12-0012). We thank Dr. A. Lunghi and Dr. P. Cardillo (Stazione Sperimentale Combustibili, S. Donato Mila , 2000, Angewandte Chemie.

[37]  I. Shrivastava,et al.  Shapes and sizes of molecular anions via topographical analysis of electrostatic potential , 1991 .

[38]  Peter Politzer,et al.  Correlations between molecular electrostatic potentials and some experimentally-based indices of reactivity , 1992 .

[39]  Peter Politzer,et al.  Chemical Applications of Atomic and Molecular Electrostatic Potentials: "Reactivity, Structure, Scattering, And Energetics Of Organic, Inorganic, And Biological Systems" , 2013 .

[40]  M. Iwaoka,et al.  Quantitative evaluation of weak nonbonded Se...F interactions and their remarkable nature as orbital interactions. , 2002, Journal of the American Chemical Society.

[41]  Peter Politzer,et al.  Expansion of the σ-hole concept , 2009, Journal of molecular modeling.

[42]  Pavel Hobza,et al.  Br···O Complexes as Probes of Factors Affecting Halogen Bonding: Interactions of Bromobenzenes and Bromopyrimidines with Acetone. , 2009, Journal of chemical theory and computation.

[43]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[44]  H. Hagelin,et al.  Family-independent relationships between computed molecular surface quantities and solute hydrogen bond acidity/basicity and solute-induced methanol O–H infrared frequency shifts , 1995 .

[45]  Peter Politzer,et al.  Surface electrostatic potentials of halogenated methanes as indicators of directional intermolecular interactions , 1992 .

[46]  Modesto Orozco,et al.  Effect of electron correlation on the electrostatic potential distribution of molecules , 1991 .

[47]  Peter Murray-Rust,et al.  Angular preferences of intermolecular forces around halogen centers: preferred directions of approach of electrophiles and nucleophiles around carbon-halogen bond , 1986 .

[48]  Peter Politzer,et al.  Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies , 2010, Journal of molecular modeling.

[49]  John J. M. Wiener,et al.  Molecular electrostatic potentials as indicators of covalent radii , 1996 .

[50]  Eric Westhof,et al.  Halogen bonds in biological molecules. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Peter Politzer,et al.  The fundamental nature and role of the electrostatic potential in atoms and molecules , 2002 .

[52]  J. Murray,et al.  Molecular Surfaces, van der Waals Radii and Electrostatic Potentials in Relation to Noncovalent Interactions , 2009 .

[53]  J. Murray,et al.  Computed electrostatic potentials and average local ionization energies on the molecular surfaces of some tetracyclines , 2001 .

[54]  J. Meister,et al.  PRINCIPAL COMPONENTS OF IONICITY , 1994 .

[55]  Kevin E. Riley,et al.  Insights into the strength and origin of halogen bonding: the halobenzene-formaldehyde dimer. , 2007, The journal of physical chemistry. A.

[56]  R. Stewart On the mapping of electrostatic properties from bragg diffraction data , 1979 .

[57]  J. Murray,et al.  Density functional study of dimers of dimethylnitramine , 2000 .

[58]  Jacopo Tomasi,et al.  The electrostatic molecular potential as a tool for the interpretation of molecular properties , 1973 .

[59]  Peter Politzer,et al.  σ‐Hole bonding and hydrogen bonding: Competitive interactions , 2007 .

[60]  Peter Politzer,et al.  σ-hole bonding between like atoms; a fallacy of atomic charges , 2008, Journal of molecular modeling.

[61]  P. Politzer,et al.  Molecular electrostatic potentials: an effective tool for the elucidation of biochemical phenomena. , 1985, Environmental health perspectives.

[62]  Qishi Du,et al.  Derivation of fused-sphere molecular surfaces from properties of the electrostatic potential distribution , 1996, J. Comput. Chem..

[63]  Á. Nagy,et al.  Alternatives to the electron density for describing Coulomb systems. , 2007, Journal of Chemical Physics.

[64]  T. Paolo,et al.  On the Hydrogen Bond Breaking Ability of Fluorocarbons Containing Higher Halogens , 1974 .

[65]  P. Politzer Atomic and molecular energies as functionals of the electrostatic potential , 2004 .

[66]  F. J. Luque,et al.  Generalization of the Molecular Electrostatic Potential for the Study of Noncovalent interactions , 1996 .

[67]  J. S. Dehesa,et al.  MONOTONICITY PROPERTIES OF THE ATOMIC CHARGE DENSITY FUNCTION , 1996 .