Harmonic drive gear error: Characterization and compensation for precision pointing and tracking
暂无分享,去创建一个
Imperfections and geometry effects in harmonic drive gear reducers cause a cyclic gear error, which at a systems level, results in high frequency torque fluctuations. To address this problem, gear error testing was performed on a wide variety of sizes and types of harmonic drives. It was found that although all harmonic drives exhibit a significant first harmonic, higher harmonics varied greatly with each unit. From life tests, small changes were found in harmonic content, phase shift, and error magnitude (on the order of .008 deg peak-to-peak maximum) occurred for drives with many millions of degrees of output travel. Temperature variations also influenced gear error. Over a spread of approximately 56 C (100 F), the error varied in magnitude approximately 20 percent but changes in a repeatable and predictable manner. Concentricity and parallelness tests of harmonic drive parts resulted in showing alignment influence gear error amplitude. Tests on dedoidaled harmonic drives showed little effect on gear error; surprisingly, in one case for a small drive, gear error actually improved. Electronic compensation of gear error in harmonic drives was shown to be substantially effective for units that are first harmonic dominant.