Polylogarithmic Independence Can Fool DNF Formulas

We show that any k-wise independent probability measure on {0, 1}n can O(m2ldr2ldr2-radick/10)-fool any boolean function computable by an rn-clauses DNF (or CNF) formula on n variables. Thus, for each constant c > 0. there is a constant e > 0 such that any boolean function computable by an m-clauses DNF (or CNF) formula can be in m-e-fooled by any clog in-wise probability measure. This resolves, asymptotically and up to a logm factor, the depth-2 circuits case of a conjecture due to Linial and Nisan (1990). The result is equivalent to a new characterization of DNF (or CNF) formulas by low degree polynomials. It implies a similar statement for probability measures with the small bias property. Using known explicit constructions of small probability spaces having the limited independence property or the small bias property, we. directly obtain a large class of explicit PRG's ofO(log2 m log n)-seed length for m-clauses DNF (or CNF) formulas on n variables, improving previously known seed lengths.

[1]  Nathan Linial,et al.  The influence of variables on Boolean functions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[2]  Noam Nisan,et al.  Hardness vs Randomness , 1994, J. Comput. Syst. Sci..

[3]  Noam Nisan,et al.  Approximate Inclusion-Exclusion , 1990, STOC '90.

[4]  Michael Luby,et al.  A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.

[5]  Noam Nisan,et al.  Approximate Inclusion-Exclusion , 1990, Comb..

[6]  James Aspnes,et al.  The expressive power of voting polynomials , 1991, STOC '91.

[7]  矢島 脩三,et al.  Harmonic Analysis of Switching Functions (情報科学の数学的理論) , 1973 .

[8]  B. E. Eckbo,et al.  Appendix , 1826, Epilepsy Research.

[9]  Avi Wigderson,et al.  Deterministic approximate counting of depth-2 circuits , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[10]  Noam Nisan,et al.  On the degree of boolean functions as real polynomials , 1992, STOC '92.

[11]  Luca Trevisan A Note on Deterministic Approximate Counting for k-DNF , 2002, Electron. Colloquium Comput. Complex..

[12]  J. Håstad Computational limitations of small-depth circuits , 1987 .

[13]  Avi Wigderson,et al.  P = BPP if E requires exponential circuits: derandomizing the XOR lemma , 1997, STOC '97.

[14]  Noga Alon,et al.  Simple Construction of Almost k-wise Independent Random Variables , 1992, Random Struct. Algorithms.

[15]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1993, JACM.

[16]  Noam Nisan,et al.  Constant depth circuits, Fourier transform, and learnability , 1989, 30th Annual Symposium on Foundations of Computer Science.

[17]  Noam Nisan,et al.  Pseudorandom bits for constant depth circuits , 1991, Comb..

[18]  Moni Naor,et al.  Small-Bias Probability Spaces: Efficient Constructions and Applications , 1993, SIAM J. Comput..

[19]  Kaladhar Voruganti,et al.  Volume I , 2005, Proceedings of the Ninth International Conference on Computer Supported Cooperative Work in Design, 2005..

[20]  A. Razborov Lower bounds on the size of bounded depth circuits over a complete basis with logical addition , 1987 .

[21]  Louay Bazzi Polylogarithmic Independence Can Fool DNF Formulas , 2007, FOCS.

[22]  Verzekeren Naar Sparen,et al.  Cambridge , 1969, Humphrey Burton: In My Own Time.

[23]  Daniel A. Spielman,et al.  The perceptron strikes back , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[24]  Avi Wigderson,et al.  Deterministic simulation of probabilistic constant depth circuits , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[25]  Noga Alon,et al.  Almost k-wise independence versus k-wise independence , 2003, Information Processing Letters.

[26]  Louay Bazzi,et al.  Minimum distance of error correcting codes versus encoding complexity, symmetry, and pseudorandomness , 2003 .

[27]  Manuel Blum,et al.  How to generate cryptographically strong sequences of pseudo random bits , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[28]  Michael Luby,et al.  On deterministic approximation of DNF , 2005, Algorithmica.

[29]  Andrew Chi-Chih Yao,et al.  Theory and application of trapdoor functions , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[30]  Alexander A. Razborov A Simple Proof of Bazzi’s Theorem , 2009, TOCT.