Genetic diversity and ecological heterogeneity in amphibian evolution

lyzed by reviewing allozyme diversity from a global literature database involving 189 amphibian species (two orders and 13 families), 123 urodeles (five families), and 66 anurans (eight families). The analysis involved genetic indices of heterozygosity (H) and polymorphism (P), averaging 23 gene loci (range: 10-50 loci) per species. Likewise, we analyzed DNA content (genome size) in 24 species, mostly urodeles. The genetic indices were correlated with 18 biotic variables, involving seven ecological, five demographic, and six life history variables. The following results were indicated: (1) Heterozygosity is significantly correlated with life zone and habitat type. Tropical species are more heterozygous than temperate species (H = 0.096 vs 0.065, respectively; P Rhacophoridae (0.123) > Sooglossidae (0.106) > Bufonidae (0.105) > Plethodontidae (0.077) > Ranidae (0.075) > Salamandridae (0.058) > Hylidae (0.051) > Ascaphidae (0.048) > Pelobatidae (0.044) > Proteidae (0.017) > Ambystomidae (0.009) > Cryptobranchidae (0.006). Thus, genetic diversity decreases with decreasing ecological heterogeneity from terrestrial and arboreal to aquatic and subterranean habitats, i.e., with decreasing niche breadth, or with increasing ecological stability and predictability. (2) Genetic diversity is partly correlated with, and explained by, a combination of three ecological variables. We concluded that ecological rather than demographic variables predominate in explaining and predicting genetic diversity and divergence in amphibians. Likewise, fecundity, body size, and longevity explain a considerable amount of the variance in DNA content, R2 = 0.72. The patterns and correlates of genetic diversity in amphibians strongly implicate environmental selection as an important evolutionary force causing divergence of heterozygosity, and are inconsistent with predictions of the neutral theory of molecular evolution.

[1]  E. Nevo,et al.  Genetic diversity and climatic determinants of tree frogs in Israel , 1979, Oecologia.

[2]  E. Nevo,et al.  Geographic variation of blood and liver proteins in cricket frogs , 1969, Biochemical Genetics.

[3]  G. Dover Yes, we have no C-value paradox. , 1990, Trends in ecology & evolution.

[4]  M. Novacek,et al.  Nuclear DNA content in bats and other organisms: Implications and unanswered questions , 1989 .

[5]  J. Bickham,et al.  FLOW‐CYTOMETRIC ANALYSES OF NUCLEAR DNA CONTENT IN FOUR FAMILIES OF NEOTROPICAL BATS , 1989, Evolution; international journal of organic evolution.

[6]  D. A. Good HYBRIDIZATION AND CRYPTIC SPECIES IN DICAMPTODON (CAUDATA: DICAMPTODONTIDAE) , 1989, Evolution; international journal of organic evolution.

[7]  M. Adams,et al.  A biochemical and morphological study of Rana (Anura: Ranidae) from the Chimbu Province, Papua New Guinea , 1989 .

[8]  T. Sharbel,et al.  Allozyme relationships of some frogs (genus Rana) from Yunnan, China , 1989 .

[9]  L. Maxson,et al.  Biochemical evolution in the slimy salamanders of the Plethodon glutinosus Complex in the Eastern United States , 1989 .

[10]  A. Wynn,et al.  A new species of rock-crevice dwelling Plethodon from Pigeon Mountain, Georgia , 1988 .

[11]  R. Nussbaum,et al.  GENETIC-DIVERGENCE AND HETEROZYGOSITY AMONG FROGS OF THE FAMILY SOOGLOSSIDAE , 1988 .

[12]  S. Ohta,et al.  Speciation of Three Allied Genera, Buergeria, Rhacophorus and Polypedates, Elucidated by the Method of Electrophoretic Analyses , 1987 .

[13]  M. Nei Molecular Evolutionary Genetics , 1987 .

[14]  J. Jacobs A preliminary investigation of geographic genetic variations and systematics of the two-lined Salamander, Eurycea bislineata (Green) , 1987 .

[15]  D. Green Systematics and Evolution of Western North American Frogs Allied to Rana Aurora and Rana Boylii: Electrophoretic Evidence , 1986 .

[16]  D. Wake,et al.  GEOGRAPHIC VARIATION IN ALLOZYMES IN A “RING SPECIES,” THE PLETHODONTID SALAMANDER ENSATINA ESCHSCHOLTZII OF WESTERN NORTH AMERICA , 1986, Evolution; international journal of organic evolution.

[17]  S. Hedges An Electrophoretic Analysis of Holarctic Hylid Frog Evolution , 1986 .

[18]  D. Wake,et al.  GENIC VARIATION AND ITS EVOLUTIONARY IMPLICATIONS IN THE ITALIAN NEWT, TRITURUS ITALICUS , 1986 .

[19]  P. Hedrick GENETIC POLYMORPHISM IN HETEROGENEOUS ENVIRONMENTS: A DECADE LATER , 1986 .

[20]  Mark A. Wilson,et al.  Pelobates varaldii (Anura:Pelobatidae): A Morphologically Conservative Species , 1985 .

[21]  J. Arntzen,et al.  Genetic differentiation between African and European Midwife Toads (Alytes, Discoglossidae) , 1984 .

[22]  D. Wake,et al.  Genic and Morphological Differentiation in Mexican Pseudoeurycea (Caudata: Plethodontidae), with a Description of a New Species , 1983 .

[23]  J. Hanken Genetic Variation in a Dwarfed Lineage, the Mexican Salamander Genus Thorius (Amphibia: Plethodontidae): Taxonomic, Ecologic and Evolutionary Implications , 1983 .

[24]  F. Allendorf,et al.  Systematic Implications of Geographic Patterns of Genetic Variation in the Genus Dicamptodon , 1983 .

[25]  M. Turelli,et al.  Should individual fitness increase with heterozygosity? , 1983, Genetics.

[26]  J. E. Platz,et al.  Geographic Variation of Proteins and Call in Rana pipiens from the Northcentral United States , 1981 .

[27]  L. Maxson,et al.  An electrophoretic study of genetic variation in the New Zealand frog genus Leiopelma , 1981 .

[28]  D. Wake,et al.  A MOLECULAR PHYLOGENETIC PERSPECTIVE ON THE ORIGINS OF MORPHOLOGICAL NOVELTIES IN THE SALAMANDERS OF THE TRIBE PLETHODONTINI (AMPHIBIA, PLETHODONTIDAE) , 1981, Evolution; international journal of organic evolution.

[29]  S. Tilley,et al.  Electrophoretic Variation in Appalachian Populations of the Desmognathusfuscus Complex (Amphibia: Plethodontidae) , 1981 .

[30]  P. Sattler Genetic Relationships among Selected Species of North American Scaphiopus , 1980 .

[31]  A. Larson PAEDOMORPHOSIS IN RELATION TO RATES OF MORPHOLOGICAL AND MOLECULAR EVOLUTION IN THE SALAMANDER ANEIDES FLAVIPUNCTATUS (AMPHIBIA, PLETHODONTIDAE) , 1980, Evolution; international journal of organic evolution.

[32]  M. Kimura,et al.  The neutral theory of molecular evolution. , 1983, Scientific American.

[33]  J. H. Feder,et al.  NATURAL HYBRIDIZATION AND GENETIC DIVERGENCE BETWEEN THE TOADS BUFO BOREAS AND BUFO PUNCTATUS , 1979, Evolution; international journal of organic evolution.

[34]  R. Selander,et al.  EVOLUTIONARY GENETICS OF DIPLOID—TETRAPLOID SPECIES OF TREEFROGS OF THE GENUS HYLA , 1979, Evolution; international journal of organic evolution.

[35]  S Karlin,et al.  Principles of polymorphism and epistasis for multilocus systems. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[36]  R. Highton,et al.  Geographic Protein Variation and Divergence in the Salamanders of the Plethodon Weller Group (Amphibia, Plethodontidae) , 1978 .

[37]  A. Karlin,et al.  A Biochemical and Morphological Analysis of the Relationship Between Plethodon longicrus and Plethodon yonahlossee (Amphibia, Urodela, Plethodontidae) , 1978 .

[38]  J H Gillespie,et al.  A general model to account for enzyme variation in natural populations. V. The SAS--CFF model. , 1978, Theoretical population biology.

[39]  R. Merritt,et al.  GENETIC DIFFERENTIATION IN SALAMANDERS OF THE DESMOGNATHUS OCHROPHAEUS COMPLEX (PLETHODONTIDAE) , 1978, Evolution; international journal of organic evolution.

[40]  S. Guttman,et al.  Genetic Uniformity Throughout the Range of the Hellbender, Cryptobranchus alleganiensis , 1977 .

[41]  T. Papenfuss,et al.  Studies of neotropical salamanders of the genus Pseudoeurycea, I: Systematic status of Pseudoeurycea unguidentis , 1977 .

[42]  Margaret F. Smith,et al.  Protein Variation in Several Species of Hyla , 1975 .

[43]  T. Matthews Biochemical Polymorphism in Populations of the Argentine Toad, Bufo arenarum , 1975 .

[44]  E. Nevo,et al.  Genetic variation as a test of natural selection. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[45]  S. Guttman GENETIC VARIATION IN THE GENUS BUFO II. ISOZYMES IN NORTHERN ALLOPATRIC POPULATIONS OF THE AMERICAN TOAD, Bufo americanus , 1975 .

[46]  F. Ayala,et al.  Evolutionary Divergence in the Genus Taricha (Salamandridae) , 1974 .

[47]  J H Gillespie,et al.  A general model to account for enzyme variation in natural populations. , 1974, Genetics.

[48]  J. S. Rogers Protein Polymorphism, Genic Heterozygosity and Divergence in the Toads Bufo cognatus and B. speciosus , 1973 .

[49]  Ronald A. Nussbaum Dicamptodon copei, n. sp., from The Pacific Northwest, U.S.A. (Amphibia: Caudata: Ambystomatidae) , 1970 .

[50]  L. V. Valen,et al.  MORPHOLOGICAL VARIATION AND WIDTH OF ECOLOGICAL NICHE , 1965 .

[51]  H. Levene,et al.  Genetic Equilibrium When More Than One Ecological Niche is Available , 1953, The American Naturalist.