Time-Varying Systemic Risk: Evidence From a Dynamic Copula Model of CDS Spreads

This article proposes a new class of copula-based dynamic models for high-dimensional conditional distributions, facilitating the estimation of a wide variety of measures of systemic risk. Our proposed models draw on successful ideas from the literature on modeling high-dimensional covariance matrices and on recent work on models for general time-varying distributions. Our use of copula-based models enables the estimation of the joint model in stages, greatly reducing the computational burden. We use the proposed new models to study a collection of daily credit default swap (CDS) spreads on 100 U.S. firms over the period 2006 to 2012. We find that while the probability of distress for individual firms has greatly reduced since the financial crisis of 2008–2009, the joint probability of distress (a measure of systemic risk) is substantially higher now than in the precrisis period. Supplementary materials for this article are available online.

[1]  Dong Hwan Oh,et al.  High-Dimensional Copula-Based Distributions with Mixed Frequency Data , 2015 .

[2]  Dong Hwan Oh,et al.  Modeling Dependence in High Dimensions With Factor Copulas , 2015 .

[3]  Stefano Giglio,et al.  Systemic Risk and the Macroeconomy: An Empirical Evaluation , 2015 .

[4]  A. Lucas,et al.  Modeling Financial Sector Joint Tail Risk in the Euro Area , 2013, SSRN Electronic Journal.

[5]  António R. Antunes Co-movement of revisions in short- and long-term inflation expectations , 2015 .

[6]  Siem Jan Koopman,et al.  Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time Series Models , 2014 .

[7]  Genaro Sucarrat,et al.  EGARCH models with fat tails, skewness and leverage , 2014, Comput. Stat. Data Anal..

[8]  A. Opschoor,et al.  New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels , 2014 .

[9]  Ruey S. Tsay,et al.  High Dimensional Dynamic Stochastic Copula Models , 2014 .

[10]  F. Blasques,et al.  Information Theoretic Optimality of Observation Driven Time Series Models , 2014 .

[11]  F. Blasques,et al.  Maximum Likelihood Estimation for Generalized Autoregressive Score Models , 2014 .

[12]  Siem Jan Koopman,et al.  Testing for Parameter Instability in Competing Modeling Frameworks , 2014 .

[13]  Hugues Langlois,et al.  Dynamic Dependence and Diversification in Corporate Credit∗ , 2014 .

[14]  Eike Christian Brechmann,et al.  Conditional copula simulation for systemic risk stress testing , 2013 .

[15]  Drew D. Creal,et al.  Generalized autoregressive score models with applications ∗ , 2010 .

[16]  Andrew J. Patton,et al.  Dynamic Copula Models and High Frequency Data , 2013 .

[17]  Xin Zhang,et al.  Conditional Euro Area Sovereign Default Risk , 2013 .

[18]  Peter F. Christoffersen,et al.  Dynamic Dependence in Corporate Credit , 2013 .

[19]  Dong Hwan Oh,et al.  Simulated Method of Moments Estimation for Copula-Based Multivariate Models , 2013 .

[20]  Andrew Harvey,et al.  Dynamic Models for Volatility and Heavy Tails , 2013 .

[21]  Andrew J. Patton Copula Methods for Forecasting Multivariate Time Series , 2013 .

[22]  Hugues Langlois,et al.  Is the Potential for International Diversi?cation Disappearing? A Dynamic Copula Approach , 2012 .

[23]  Drew D. Creal,et al.  Market-Based Credit Ratings , 2012 .

[24]  Robert F. Engle,et al.  Volatility, Correlation and Tails for Systemic Risk Measurement , 2010 .

[25]  F. Blasques,et al.  Stationarity and Ergodicity of Univariate Generalized Autoregressive Score Processes , 2012 .

[26]  Claudia Czado,et al.  Detecting regime switches in the dependence structure of high dimensional financial data , 2012, 1202.2009.

[27]  C. Czado,et al.  Modeling high dimensional time-varying dependence using D-vine SCAR models , 2012, 1202.2008.

[28]  A. Lo,et al.  A Survey of Systemic Risk Analytics , 2012 .

[29]  Board of Governors of the Federal Reserve , 2012 .

[30]  A. Lucas,et al.  Conditional Probabilities for Euro Area Sovereign Default Risk , 2011 .

[31]  R. Engle,et al.  Dynamic Equicorrelation , 2011 .

[32]  Andrew Ang,et al.  Systemic Sovereign Credit Risk: Lessons from the U.S. and Europe , 2011 .

[33]  Robert F. Dittmar,et al.  Cross-Market and Cross-Firm Effects in Implied Default Probabilities and Recovery Values , 2011 .

[34]  Kay Giesecke,et al.  Systemic Risk: What Defaults are Telling Us , 2009, Manag. Sci..

[35]  B. Rémillard Goodness-of-Fit Tests for Copulas of Multivariate Time Series , 2010 .

[36]  Peter F. Christoffersen,et al.  Is the Potential for International Diversification Disappearing? , 2010 .

[37]  Siem Jan Koopman,et al.  A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations , 2010 .

[38]  J. Segers,et al.  Tails of correlation mixtures of elliptical copulas , 2009, 0912.3516.

[39]  Xin Huang,et al.  A Framework for Assessing the Systemic Risk of Major Financial Institutions , 2009 .

[40]  Charles Goodhart,et al.  Banking Stability Measures , 2009, SSRN Electronic Journal.

[41]  H. Manner,et al.  Dynamic stochastic copula models: Estimation, inference and applications , 2012 .

[42]  Peter Carr,et al.  A Simple Robust Link between American Puts and Credit Protection , 2008 .

[43]  Xiaohong Chen,et al.  Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification , 2006 .

[44]  M. Rockinger,et al.  The Copula-GARCH model of conditional dependencies: An international stock market application , 2006 .

[45]  J. Hull Risk Management And Financial Institutions , 2006 .

[46]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[47]  Stefan Straetmans,et al.  Banking System Stability: A Cross-Atlantic Perspective , 2005, SSRN Electronic Journal.

[48]  Georges Dionne,et al.  Credit Risk: Pricing, Measurement, and Management , 2005 .

[49]  N. Shephard Stochastic Volatility: Selected Readings , 2005 .

[50]  W. Dunsmuir,et al.  Observation-driven models for Poisson counts , 2003 .

[51]  Kenneth J. Singleton,et al.  Credit Risk: Pricing, Measurement, and Management , 2003 .

[52]  H. White,et al.  THE BOOTSTRAP OF THE MEAN FOR DEPENDENT HETEROGENEOUS ARRAYS , 2001, Econometric Theory.

[53]  L. Pedersen,et al.  Measuring Systemic Risk , 2010 .

[54]  R. Nelsen An Introduction to Copulas , 1998 .

[55]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[56]  K. Judd Numerical methods in economics , 1998 .

[57]  K. Kroner,et al.  Another Look at Models of the Short-Term Interest Rate , 1996, Journal of Financial and Quantitative Analysis.

[58]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[59]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[60]  Halbert White,et al.  Estimation, inference, and specification analysis , 1996 .

[61]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[62]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[63]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[64]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[65]  B. McCarl,et al.  Economics , 1870, The Indian medical gazette.