Quantifying the solute-induced additional repulsive force between two partials of pure screw dislocations

[1]  Junqin Shi,et al.  Deformation evolution of Cu/Ta nanoscale multilayer during nanoindentation by a molecular dynamics study , 2022, Surface and Coatings Technology.

[2]  M. Zaiser,et al.  Pinning of Extended Dislocations in Atomically Disordered Crystals , 2021, SSRN Electronic Journal.

[3]  M. Mills,et al.  Stacking fault energy in concentrated alloys , 2021, Nature Communications.

[4]  Huajian Gao,et al.  Rapid fabrication of complex nanostructures using room-temperature ultrasonic nanoimprinting , 2021, Nature Communications.

[5]  M. Fivel,et al.  The effect of stress on the cross-slip energy in face-centered cubic metals: A study using dislocation dynamics simulations and line tension models , 2021 .

[6]  W. Kuykendall,et al.  Stress effects on the energy barrier and mechanisms of cross-slip in FCC nickel , 2020 .

[7]  Yunzhi Wang,et al.  Can Experiment Determine the Stacking Fault Energy of Metastable Alloys? , 2020, Materials & Design.

[8]  D. Rodney,et al.  Investigation of partial dislocations fluctuations yields dislocation core parameters , 2020, Modelling and Simulation in Materials Science and Engineering.

[9]  D. McDowell,et al.  Atomistic modeling of dislocation cross-slip in nickel using free-end nudged elastic band method , 2019, Acta Materialia.

[10]  D. Rodney,et al.  Thermal fluctuations of dislocations reveal the interplay between their core energy and long-range elasticity , 2018, Physical Review B.

[11]  R. Ritchie,et al.  Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys , 2018, Proceedings of the National Academy of Sciences.

[12]  W. Curtin,et al.  New theory for crack-tip twinning in fcc metals , 2018 .

[13]  A. Hirata,et al.  Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi , 2018 .

[14]  M. A. Zaeem,et al.  Generalized stacking fault energies, ductilities, and twinnabilities of CoCrFeNi-based face-centered cubic high entropy alloys , 2017 .

[15]  Zijiao Zhang,et al.  Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy , 2017, Nature Communications.

[16]  Y. Mishin,et al.  Microstructural evolution in a nanocrystalline Cu-Ta alloy: A combined in-situ TEM and atomistic study , 2017 .

[17]  W. Curtin,et al.  Crack tip blunting and cleavage under dynamic conditions , 2016 .

[18]  G. P. P. Pun,et al.  Angular-dependent interatomic potential for the Cu–Ta system and its application to structural stability of nano-crystalline alloys , 2015 .

[19]  Dengke Chen,et al.  Entropic interaction between fluctuating twin boundaries , 2015 .

[20]  Huajian Gao,et al.  Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction , 2015, Nature Communications.

[21]  G. Schoeck The cross-slip energy unresolved , 2009 .

[22]  J C Hamilton,et al.  An embedded-atom potential for the Cu–Ag system , 2006 .

[23]  Xuemei Cheng,et al.  Deformation Twinning in Nanocrystalline Aluminum , 2003, Science.

[24]  David J. Benson,et al.  Constitutive description of dynamic deformation: physically-based mechanisms , 2002 .

[25]  R. LeSar,et al.  Finite-temperature dislocation interactions , 2001 .

[26]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[27]  E. Stach,et al.  Dislocation nucleation facilitated by atomic segregation. , 2018, Nature Materials.

[28]  A. Stukowski Modelling and Simulation in Materials Science and Engineering Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool , 2009 .