Spatial and temporal influence of glaciers and rivers on the sedimentary environment in Sassenfjorden and Tempelfjorden, Spitsbergen

Abstract Multiproxy analyses including hydrographical, geochemical, foraminferal, lithological and geophysical data reveal variable influences of the glaciers Tunabreen and von Postbreen as well as the river Sassenelva on the sedimentary environment in two Spitsbergen fjords during the Late Weichselian and the Holocene. Grounded ice covered the study area during the last glacial. The glacier fronts retreated stepwise during the latest Weichselian/earliest Holocene, and the glaciers were probably small during the early Holocene. A growth of Tunabreen occurred between 6 and 4 cal ka BP. Reduced input from Tunabreen from c. 3.7 cal ka BP was probably a result of suppressed iceberg rafting related to the enhanced formation of sea ice and/or reduced meltwater runoff. During the past two millennia, the glacier fronts advanced and retreated several times. The maximum Holocene glacier extent was reached at the end of a surge of von Postbreen in AD 1870. Characteristics of the modern glaciomarine environment include: (1) different colours and bulk-mineral assemblages of the turbid waters emanating from the main sediment sources; (2) variable locations of the turbid-water plumes as a consequence of wind forcing and the Coriolis effect; (3) stratified water masses during summers with interannual variations; (4) increasing productivity with increasing distance from the glacier fronts; (5) foraminifera-faunal assemblages typical for glacierproximal settings; and (6) periodical mass-transport activity.

[1]  T. Vorren,et al.  Late Weichselian and Holocene sedimentary environments and glacial activity in Billefjorden, Svalbard , 2010 .

[2]  W. Austin,et al.  Fjord systems and archives: an introduction , 2010 .

[3]  T. L. Rasmussen,et al.  Holocene climate variations at the entrance to a warm Arctic fjord: evidence from Kongsfjorden trough, Svalbard , 2010 .

[4]  D. Benn,et al.  Surge propagation constrained by a persistent subglacial conduit, Bakaninbreen–Paulabreen, Svalbard , 2009, Annals of Glaciology.

[5]  T. Vorren,et al.  Late Weichselian and Holocene sedimentary environments and ice rafting in Isfjorden, Spitsbergen , 2009 .

[6]  Nicole J. Baeten,et al.  Pockmarks in Spitsbergen fjords , 2009 .

[7]  F. Cottier,et al.  Fjord-shelf exchanges controlled by ice and brine production: The interannual variation of Atlantic Water in Isfjorden, Svalbard , 2008 .

[8]  O. Christensen,et al.  Submarine landforms characteristic of glacier surges in two Spitsbergen fjords , 2008 .

[9]  A. Kuijpers,et al.  Variable North Atlantic climate seesaw patterns documented by a late Holocene marine record from Disko Bugt, West Greenland , 2008 .

[10]  M. Hambrey,et al.  Sedimentary and tectonic development of a high‐arctic, thrust‐moraine complex: Comfortlessbreen, Svalbard , 2008 .

[11]  J. Mangerud,et al.  The retreat of the Barents Sea Ice Sheet on the western Svalbard margin , 2008 .

[12]  S. Gerland,et al.  Sea-ice mass-balance monitoring in an Arctic fjord , 2007, Annals of Glaciology.

[13]  T. Vorren,et al.  Holocene mass-transport activity and climate in outer Isfjorden, Spitsbergen: marine and subsurface evidence , 2007 .

[14]  F. Cottier,et al.  Wintertime warming of an Arctic shelf in response to large‐scale atmospheric circulation , 2007 .

[15]  T. L. Rasmussen,et al.  Paleoceanographic evolution of the SW Svalbard margin (76°N) since 20,000 14C yr BP , 2007, Quaternary Research.

[16]  J. Dowdeswell,et al.  Assemblages of submarine landforms produced by tidewater glaciers in Svalbard , 2006 .

[17]  K. Holmgren,et al.  Corrigendum: Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data , 2006, Nature.

[18]  I. Lønne Faint traces of high Arctic glaciations: an early Holocene ice‐front fluctuation in Bolterdalen, Svalbard , 2005 .

[19]  J. Dowdeswell,et al.  Submarine landforms and the reconstruction of fast-flowing ice streams within a large Quaternary ice sheet: The 2500-km-long Norwegian-Svalbard margin (57°–80°N) , 2005 .

[20]  K. Holmgren,et al.  Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data , 2005, Nature.

[21]  J. Mienert,et al.  Rethinking Late Weichselian ice‐sheet dynamics in coastal NW Svalbard , 2005 .

[22]  C. Buck,et al.  Marine04 Marine radiocarbon age calibration, 26 ? 0 ka BP , 2004 .

[23]  F. Godtliebsen,et al.  Holocene paleoceanography and glacial history of the West Spitsbergen area, Euro-Arctic margin , 2004 .

[24]  T. Vorren,et al.  Integrated acoustic and coring investigation of glacigenic deposits in Spitsbergen fjords , 2004 .

[25]  J. Hart,et al.  Till and moraine emplacement in a deforming bed surge—an example from a marine environment , 2004 .

[26]  C. Buck,et al.  Marine04 Marine Radiocarbon Age Calibration, 0–26 Cal Kyr Bp , 2004, Radiocarbon.

[27]  Michael Schulz,et al.  Centennial‐to‐millennial‐scale periodicities of Holocene climate and sediment injections off the western Barents shelf, 75°N , 2003 .

[28]  Tazio Strozzi,et al.  Is there a single surge mechanism? Contrasts in dynamics between glacier surges in Svalbard and other regions , 2003 .

[29]  R. Fischer,et al.  Investigation of the clay fraction (<2 µm) of the clay minerals society reference clays , 2002 .

[30]  T. Vorren,et al.  Deglaciation and palaeoclimate of the Andfjord‐Vågsfjord area, North Norway , 2002 .

[31]  J. B. Ørbæk,et al.  The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard , 2002 .

[32]  M. Bennett The morphology, structural evolution and significance of push moraines , 2001 .

[33]  T. Olsen,et al.  Late Holocene palaeoceanography in Van Mijenfjorden, Svalbard , 2001 .

[34]  G. Parker,et al.  On the dynamics of subaqueous debris flows , 2000 .

[35]  M. Hald,et al.  SEASONAL DYNAMICS OF BENTHIC FORAMINIFERA IN A GLACIALLY FED FJORD OF SVALBARD, EUROPEAN ARCTIC , 2000 .

[36]  E. Muller,et al.  Tsivat Basin conduit system persists through two surges, Bering Piedmont Glacier, Alaska , 1998 .

[37]  M. Hald,et al.  Modern Benthic Foraminifera off Novaya Zemlya Tidewater Glaciers, Russian Arctic , 1998 .

[38]  T. Vorren,et al.  FLUCTUATIONS OF THE SVALBARD–BARENTS SEA ICE SHEET DURING THE LAST 150 000 YEARS , 1998 .

[39]  T. Vorren,et al.  THE LAST GLACIAL MAXIMUM OF SVALBARD AND THE BARENTS SEA AREA: ICE SHEET EXTENT AND CONFIGURATION , 1998 .

[40]  J. Dowdeswell,et al.  Glacimarine sedimentary processes and facies on the Polar North Atlantic margins , 1998 .

[41]  J. Mangerud,et al.  Holocene glacial and climatic variations on Spitsbergen, Svalbard , 1997 .

[42]  M. Hald,et al.  Distribution of modern benthic foraminifera from fjords of Svalbard, European Arctic , 1997 .

[43]  Tan,et al.  Ecology of Fjords and Coastal Waters , 1997 .

[44]  I. Snowball,et al.  Early Holocene environment on Bjørnøya (Svalbard) inferred from multidisciplinary lake sediment studies , 1995 .

[45]  J. Milliman,et al.  Late Quaternary Sediment Yield from the High Arctic Svalbard Area , 1995, The Journal of Geology.

[46]  M. E. Mackay,et al.  Origin of bottom-simulating reflectors: Geophysical evidence from the Cascadia accretionary prism , 1994 .

[47]  J. Dowdeswell,et al.  The origin of massive diamicton facies by iceberg rafting and scouring, Scoresby Sund, East Greenland , 1994 .

[48]  A. Werner Holocene moraine chronology, Spitsbergen, Svalbard: lichenometric evidence for multiple Neoglacial advances in the Arctic , 1993 .

[49]  Jon Ove Hagen,et al.  Glacier atlas of Svalbard and Jan Mayen , 1993 .

[50]  P. Reimer,et al.  Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program , 1993, Radiocarbon.

[51]  I. Lønne,et al.  The Last Glacial Maximum on Spitsbergen, Svalbard , 1992, Quaternary Research.

[52]  H. H. Birks Holocene vegetational history and climatic change in west Spitsbergen - plant macrofossils from Skardtjørna, an Arctic lake , 1991 .

[53]  R. Stein Accumulation of Organic Carbon in Marine Sediments , 1991 .

[54]  J. Dowdeswell Processes of glacimarine sedimentation , 1987 .

[55]  G. Boulton Push-moraines and glacier-contact fans in marine and terrestrial environments , 1986 .

[56]  Norsk Polarinstitutt,et al.  Geological map 1:100, 000 Bedrock map of Svalbard and Jan Mayen , 1986 .

[57]  James K. B. Bishop,et al.  The correction and suspended particulate matter calibration of Sea Tech transmissometer data , 1986 .

[58]  E. Hamilton Sound velocity as a function of depth in marine sediments , 1985 .

[59]  Barclay Kamb,et al.  Glacier Surge Mechanism: 1982-1983 Surge of Variegated Glacier, Alaska , 1985, Science.

[60]  T. Vorren,et al.  Quaternary sediments and environments on the continental shelf off northern Norway , 1984 .

[61]  R. Powell Glacimarine processes and inductive lithofacies modelling of ice shelf and tidewater glacier sediments based on quaternary examples , 1984 .

[62]  J. Skei Why sedimentologists are interested in Fjords , 1983 .

[63]  D. B. Prior,et al.  Submarine chutes on the slopes of fjord deltas , 1981, Nature.

[64]  J. Mangerud,et al.  Apparent Radiocarbon Ages of recent marine shells from Norway, Spitsbergen, and Arctic Canada , 1975, Quaternary Research.