Concurrence vectors of multipartite states based on coefficient matrices

In this paper, we propose a concurrence vector for a multipartite qudit pure state based on its coefficient matrices and define its norm as the generalized concurrence. Moreover, we prove that this generalized concurrence is a good measure according to the three necessary conditions that any measure of entanglement has to satisfy, i.e. it equals zero if and only if the state is separable, it remains invariant under local unitary transformations, and it is not increasing under local operations and classical communication. This generalized concurrence is very practical and convenient for computation.

[1]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[2]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[3]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[4]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[5]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[6]  A. Uhlmann Entropy and Optimal Decompositions of States Relative to a Maximal Commutative Subalgebra , 1997, quant-ph/9704017.

[7]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[8]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[9]  S Popescu,et al.  Multi-particle entanglement , 1998 .

[10]  A. Sudbery,et al.  How entangled can two couples get , 2000, quant-ph/0005013.

[11]  G. Milburn,et al.  Universal state inversion and concurrence in arbitrary dimensions , 2001, quant-ph/0102040.

[12]  S. Fei,et al.  A note on invariants and entanglements , 2001, quant-ph/0109073.

[13]  William K. Wootters,et al.  Entanglement of formation and concurrence , 2001, Quantum Inf. Comput..

[14]  B. De Moor,et al.  Variational characterizations of separability and entanglement of formation , 2001 .

[15]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[16]  Yishai Shimoni,et al.  Characterization of pure quantum states of multiple qubits using the Groverian entanglement measure , 2004 .

[17]  S. Stepney,et al.  Searching for highly entangled multi-qubit states , 2005 .

[18]  S. J. Akhtarshenas Concurrence vectors in arbitrary multipartite quantum systems , 2003, quant-ph/0311166.

[19]  G. Florio,et al.  Probability-density-function characterization of multipartite entanglement , 2006 .

[20]  Daowen Qiu,et al.  An entanglement measure based on two-order minors , 2009 .

[21]  Daowen Qiu,et al.  Practical full and partial separability criteria for multipartite pure states based on the coefficient matrix method , 2009 .