Image-quality evaluation and model selection with maximum a posteriori probability

[1]  D Van Dyck,et al.  MULTEM: A new multislice program to perform accurate and fast electron diffraction and imaging simulations using Graphics Processing Units with CUDA. , 2015, Ultramicroscopy.

[2]  Piet M. T. Broersen,et al.  On Finite Sample Theory for Autoregressive Model Order Selection , 1993, IEEE Trans. Signal Process..

[3]  I. J. Myung,et al.  Applying Occam’s razor in modeling cognition: A Bayesian approach , 1997 .

[4]  S Van Aert,et al.  The maximum a posteriori probability rule for atom column detection from HAADF STEM images. , 2019, Ultramicroscopy.

[5]  J. Ridder,et al.  DIAMONDS: A new Bayesian nested sampling tool - Application to peak bagging of solar-like oscillations , 2014, 1408.2515.

[6]  Piet M. T. Broersen,et al.  On the penalty factor for autoregressive order selection in finite samples , 1996, IEEE Trans. Signal Process..

[7]  D. Van Dyck,et al.  Maximum likelihood estimation of structure parameters from high resolution electron microscopy images. Part I: a theoretical framework. , 2005 .

[8]  J. Sijbers,et al.  Estimation of unknown structure parameters from high-resolution (S)TEM images: what are the limits? , 2013, Ultramicroscopy.

[9]  I. J. Myung,et al.  The Importance of Complexity in Model Selection. , 2000, Journal of mathematical psychology.

[10]  A. J. den Dekker,et al.  Maximum likelihood estimation of structure parameters from high resolution electron microscopy images. Part II: a practical example. , 2005, Ultramicroscopy.

[11]  J Sijbers,et al.  StatSTEM: An efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images. , 2016, Ultramicroscopy.

[12]  Jian Li,et al.  Multi-model approach to model selection , 2004, Digit. Signal Process..

[13]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[14]  S Bals,et al.  Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy. , 2009, Ultramicroscopy.

[15]  O. Landon-Cardinal,et al.  Random vs realistic amorphous carbon models for high resolution microscopy and electron diffraction , 2013 .

[16]  J. Verbeeck,et al.  Progress and new advances in simulating electron microscopy datasets using MULTEM. , 2016, Ultramicroscopy.

[17]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[18]  Yves Rosseel,et al.  On the Definition of Signal-To-Noise Ratio and Contrast-To-Noise Ratio for fMRI Data , 2013, PloS one.

[19]  S. Bals,et al.  Procedure to count atoms with trustworthy single-atom sensitivity , 2013 .

[20]  J. Fatermans,et al.  Atom column detection from simultaneously acquired ABF and ADF STEM images. , 2020, Ultramicroscopy.

[21]  P. Goos,et al.  Model-based electron microscopy : from images toward precise numbers for unknown structure parameters , 2012 .

[22]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[23]  P. Nellist,et al.  Single Atom Detection from Low Contrast-to-Noise Ratio Electron Microscopy Images. , 2018, Physical review letters.

[24]  E. B. Wilson Probable Inference, the Law of Succession, and Statistical Inference , 1927 .

[25]  P D Nellist,et al.  Probe integrated scattering cross sections in the analysis of atomic resolution HAADF STEM images. , 2013, Ultramicroscopy.

[26]  H. Akaike A new look at the statistical model identification , 1974 .