The Nth-order bright and dark solitons for the higher-order nonlinear Schrödinger equation in an optical fiber

Abstract Under investigation in this paper is a sextic nonlinear Schrodinger equation, which can describe the attosecond pulses in an optical fiber. The Nth-order bright and dark soliton solutions are derived via the Hirota method. We demonstrate that the interaction between the two solitons is elastic unless the solitons propagate with the same velocities. Meanwhile, mathematical expressions of the amplitude, velocity and phase shift of each soliton are given under five cases. We reveal that two interactive bright solitons can evolve to the parallel-state solitons or bound solitons when the two solitons have the same velocities while the interaction of the dark solitons can not generate the bound solitons. Furthermore, if two branches of the second-order solitons possess the identical wave numbers and angular frequencies, the second-order solitons will degenerate into the first-order soliton.

[1]  E Bourkoff,et al.  Evolution of femtosecond pulses in single-mode fibers having higher-order nonlinearity and dispersion. , 1987, Optics letters.

[2]  B. Tian,et al.  Vector Dark Solitons for a Coupled Nonlinear Schrödinger System with Variable Coefficients in an Inhomogeneous Optical Fibre , 2017 .

[3]  Y. Shen,et al.  Spectral broadening of ultrashort pulses in a nonlinear medium. , 1984, Optics letters.

[4]  Akira Hasegawa,et al.  Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion , 1973 .

[5]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[6]  B. Movaghar,et al.  Electric-field-induced tunneling from self-trapped states , 1988 .

[7]  Bo Tian,et al.  Solitons for the (2+1)-dimensional Konopelchenko–Dubrovsky equations , 2018 .

[8]  C. S. Gardner,et al.  Korteweg-devries equation and generalizations. VI. methods for exact solution , 1974 .

[9]  L. Kavitha,et al.  SOLITON SPIN EXCITATIONS IN AN ANISOTROPIC HEISENBERG FERROMAGNET WITH OCTUPOLE-DIPOLE INTERACTION , 1999 .

[10]  Charles H. Townes,et al.  Self-steepening of light pulses. , 1967 .

[11]  Zhong-Zhou Lan,et al.  Solitons, breather and bound waves for a generalized higher-order nonlinear Schrödinger equation in an optical fiber or a planar waveguide , 2017 .

[12]  A Ankiewicz,et al.  Infinite hierarchy of nonlinear Schrödinger equations and their solutions. , 2016, Physical review. E.

[13]  Xin-Yi Gao,et al.  Looking at a nonlinear inhomogeneous optical fiber through the generalized higher-order variable-coefficient Hirota equation , 2017, Appl. Math. Lett..

[14]  C. Gu,et al.  Soliton theory and its applications , 1995 .

[15]  R. Hirota Exact envelope‐soliton solutions of a nonlinear wave equation , 1973 .

[16]  Yuji Kodama,et al.  Solitons in optical communications , 1995 .

[17]  Akira Hasegawa,et al.  Optical solitons in fibers , 1993, International Commission for Optics.

[18]  Alexander M. Rubenchik,et al.  Soliton stability in plasmas and hydrodynamics , 1986 .

[19]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[20]  Bo Tian,et al.  Higher-order rogue wave-like solutions for a nonautonomous nonlinear Schrödinger equation with external potentials , 2018 .

[21]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[22]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[23]  Vladimir E. Zakharov,et al.  A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. I , 1974 .

[24]  M. Ablowitz,et al.  Nonlinear-evolution equations of physical significance , 1973 .

[25]  M. Lakshmanan,et al.  On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain , 1992 .

[26]  I. Christov Enhanced generation of attosecond pulses in dispersion-controlled hollow-core fiber , 1999 .

[27]  B. Tian,et al.  Conservation laws, bilinear forms and solitons for a fifth-order nonlinear Schrödinger equation for the attosecond pulses in an optical fiber , 2015 .

[28]  Xin-Yi Gao Bäcklund transformation and shock-wave-type solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid mechanics , 2015 .

[29]  Ken D. Sauer,et al.  A Model-Based Image Reconstruction Algorithm With Simultaneous Beam Hardening Correction for X-Ray CT , 2015, IEEE Transactions on Computational Imaging.

[30]  Bo Tian,et al.  Bright-dark and dark-dark solitons for the coupled cubic-quintic nonlinear Schrödinger equations in a twin-core nonlinear optical fiber , 2017 .

[31]  Bo Tian,et al.  Dynamic behaviors for a perturbed nonlinear Schrödinger equation with the power-law nonlinearity in a non-Kerr medium , 2017, Commun. Nonlinear Sci. Numer. Simul..

[32]  Andrei I. Maimistov,et al.  Unidirectional propagation of an ultra-short electromagnetic pulse in a resonant medium with high frequency Stark shift , 2001, nlin/0107040.

[33]  B. Tian,et al.  Lax pair and vector solitons for a variable-coefficient coherently-coupled nonlinear Schrödinger system in the nonlinear birefringent optical fiber , 2017 .

[34]  Xin Ji,et al.  Remote Implementation of a Fredkin Gate via Virtual Excitation of an Atom‐Cavity‐Fiber System , 2019, Annalen der Physik.

[35]  Bo Tian,et al.  Dark solitons and Bäcklund transformation for the (2+1)-dimensional coupled nonlinear Schrödinger equation with the variable coefficients in a graded-index waveguide , 2017 .

[36]  Dan Anderson,et al.  Nonlinear asymmetric self-phase modulation and self-steepening of pulses in long optical waveguides , 1983 .