Polymorphism in magic-sized Au144(SR)60 clusters

[1]  Simon J. L. Billinge,et al.  ncomm-goldnp-2016: Release 2.0 , 2016 .

[2]  T. Yokoyama,et al.  Hierarchy of bond stiffnesses within icosahedral-based gold clusters protected by thiolates , 2016, Nature Communications.

[3]  Jinlong Yang,et al.  Erratum: Structural isomerism in gold nanoparticles revealed by X-ray crystallography , 2015, Nature Communications.

[4]  R. Gil,et al.  Crystal Structure of Barrel-Shaped Chiral Au130(p-MBT)50 Nanocluster. , 2015, Journal of the American Chemical Society.

[5]  J. Ilavsky,et al.  Atomic Structure of Au329(SR)84 Faradaurate Plasmonic Nanomolecules , 2015 .

[6]  X. Zuo,et al.  Au133(SPh-tBu)52 nanomolecules: X-ray crystallography, optical, electrochemical, and theoretical analysis. , 2015, Journal of the American Chemical Society.

[7]  R. Palmer,et al.  Variation of the Core Atomic Structure of Thiolated (AuxAg1–x)312±55 Nanoclusters with Composition from Aberration-Corrected HAADF STEM , 2015 .

[8]  Hee Young Byun,et al.  Structure determination of [Au18(SR)14]. , 2015, Angewandte Chemie.

[9]  Hannu Häkkinen,et al.  A critical size for emergence of nonbulk electronic and geometric structures in dodecanethiolate-protected Au clusters. , 2015, Journal of the American Chemical Society.

[10]  Greg L. Hura,et al.  Electron microscopy of gold nanoparticles at atomic resolution , 2014, Science.

[11]  A. Dass,et al.  Au₁₃₇(SR)₅₆ nanomolecules: composition, optical spectroscopy, electrochemistry and electrocatalytic reduction of CO₂. , 2014, Chemical Communications.

[12]  D. Cullen,et al.  Faradaurate-940: synthesis, mass spectrometry, electron microscopy, high-energy X-ray diffraction, and X-ray scattering study of Au∼940±20(SR)∼160±4 nanocrystals. , 2014, ACS nano.

[13]  J. Ilavsky,et al.  Super-stable, highly monodisperse plasmonic Faradaurate-500 nanocrystals with 500 gold atoms: Au(~500)(SR)(~120). , 2014, Journal of the American Chemical Society.

[14]  R. Whetten,et al.  Information on quantum states pervades the visible spectrum of the ubiquitous Au144(SR)60 gold nanocluster , 2014, Nature Communications.

[15]  R. Jin,et al.  Cyclopentanethiolato-protected Au36(SC5H9)24 nanocluster: crystal structure and implications for the steric and electronic effects of ligand. , 2014, The journal of physical chemistry. A.

[16]  R. Jin,et al.  Thermally robust Au99(SPh)42 nanoclusters for chemoselective hydrogenation of nitrobenzaldehyde derivatives in water. , 2014, Journal of the American Chemical Society.

[17]  A. Dass,et al.  Au(144-x)Cu(x)(SC6H13)60 nanomolecules: effect of Cu incorporation on composition and plasmon-like peak emergence in optical spectra. , 2014, Chemical communications.

[18]  M. Pettersson,et al.  Vibrational Perturbations and Ligand-Layer Coupling in a Single Crystal of Au144(SC2H4Ph)60 Nanocluster. , 2014, The journal of physical chemistry letters.

[19]  R. Whetten,et al.  Structure & bonding of the gold-subhalide cluster I-Au144Cl60[z]. , 2013, Physical chemistry chemical physics : PCCP.

[20]  James R. McBride,et al.  Confirmation of disordered structure of ultrasmall CdSe nanoparticles from X-ray atomic pair distribution function analysis. , 2013, Physical chemistry chemical physics : PCCP.

[21]  M. Pettersson,et al.  Nondestructive size determination of thiol-stabilized gold nanoclusters in solution by diffusion ordered NMR spectroscopy. , 2013, Analytical chemistry.

[22]  U. Landman,et al.  STEM Electron Diffraction and High Resolution Images Used in the Determination of the Crystal Structure of Au144(SR)60 Cluster. , 2013, The journal of physical chemistry letters.

[23]  Uzi Landman,et al.  Au(67)(SR)(35) nanomolecules: characteristic size-specific optical, electrochemical, structural properties and first-principles theoretical analysis. , 2013, The journal of physical chemistry. A.

[24]  Simon J. L. Billinge,et al.  PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions , 2012, 1211.7126.

[25]  C. Ackerson,et al.  Superatom electron configuration predicts thermal stability of Au25(SR)18 nanoclusters. , 2012, Journal of the American Chemical Society.

[26]  R. Jin,et al.  Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals. , 2012, Nano letters.

[27]  R. Whetten,et al.  Ligand symmetry-equivalence on thiolate protected gold nanoclusters determined by NMR spectroscopy. , 2012, Nanoscale.

[28]  Zhikun Wu,et al.  Quantum sized gold nanoclusters with atomic precision. , 2012, Accounts of chemical research.

[29]  H. Häkkinen,et al.  The gold-sulfur interface at the nanoscale. , 2012, Nature chemistry.

[30]  Andrew L. Goodwin,et al.  Applications of pair distribution function methods to contemporary problems in materials chemistry , 2011 .

[31]  T. Proffen,et al.  Building and refining complete nanoparticle structures with total scattering data , 2011 .

[32]  R. Jin,et al.  Ambient Synthesis of Au144(SR)60 Nanoclusters in Methanol , 2011 .

[33]  R. Jin,et al.  Total structure determination of thiolate-protected Au38 nanoparticles. , 2010, Journal of the American Chemical Society.

[34]  K. Shankland,et al.  Characterisation of amorphous and nanocrystalline molecular materials by total scattering , 2010 .

[35]  R. Jin,et al.  Quantum sized, thiolate-protected gold nanoclusters. , 2010, Nanoscale.

[36]  Roger D Kornberg,et al.  Synthesis and bioconjugation of 2 and 3 nm-diameter gold nanoparticles. , 2010, Bioconjugate chemistry.

[37]  Matthew J Cliffe,et al.  Structure determination of disordered materials from diffraction data. , 2009, Physical review letters.

[38]  R. Jin,et al.  Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. , 2009, Nano letters.

[39]  Y. Negishi,et al.  Size Determination of Gold Clusters by Polyacrylamide Gel Electrophoresis in a Large Cluster Region , 2009 .

[40]  R. Whetten,et al.  Structure and Bonding in the Ubiquitous Icosahedral Metallic Gold Cluster Au144(SR)60 , 2009 .

[41]  Simon J L Billinge,et al.  Relationship between the atomic pair distribution function and small-angle scattering: implications for modeling of nanoparticles. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[42]  R. Whetten,et al.  A unified view of ligand-protected gold clusters as superatom complexes , 2008, Proceedings of the National Academy of Sciences.

[43]  Y. Negishi,et al.  Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. , 2008, Journal of the American Chemical Society.

[44]  R. Jin,et al.  Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. , 2008, Journal of the American Chemical Society.

[45]  R. Murray,et al.  Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. , 2008, Journal of the American Chemical Society.

[46]  M. L. Tiago,et al.  The "staple" motif: a key to stability of thiolate-protected gold nanoclusters. , 2008, Journal of the American Chemical Society.

[47]  Pablo D. Jadzinsky,et al.  Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 Å Resolution , 2007, Science.

[48]  T. Préat,et al.  Response to Comment on "Tequila, a Neurotrypsin Ortholog, Regulates Long-Term Memory Formation in Drosophila" , 2007, Science.

[49]  Simon J L Billinge,et al.  The Problem with Determining Atomic Structure at the Nanoscale , 2007, Science.

[50]  C. L. Farrow,et al.  Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis , 2007, 0704.1288.

[51]  W. Punch,et al.  Ab initio determination of solid-state nanostructure , 2006, Nature.

[52]  R. Murray,et al.  Ligand heterogeneity on monolayer-protected gold clusters. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[53]  R. Murray,et al.  Supporting electrolyte and solvent effects on single-electron double layer capacitance charging of hexanethiolate-coated Au140 nanoparticles. , 2005, Analytical chemistry.

[54]  R. Neder,et al.  Structure of nanoparticles from powder diffraction data using the pair distribution function , 2005 .

[55]  M. Kanatzidis,et al.  Beyond Crystallography: The Study of Disorder, Nanocrystallinity and Crystallographically Challenged Materials with Pair Distribution Functions , 2004 .

[56]  Simon J L Billinge,et al.  Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. , 2004, Chemical communications.

[57]  R. Murray,et al.  Estimation of Size for 1−2 nm Nanoparticles Using an HPLC Electrochemical Detector of Double Layer Charging , 2003 .

[58]  Takeshi Egami,et al.  Underneath the Bragg Peaks , 2003 .

[59]  S. Billinge,et al.  Lattice dynamics and correlated atomic motion from the atomic pair distribution function , 2002, cond-mat/0209603.

[60]  R. Whetten,et al.  Properties of a Ubiquitous 29 kDa Au:SR Cluster Compound † , 2001 .

[61]  D. Powell,et al.  Nanosized Pd145(CO)x(PEt3)30 Containing a Capped Three‐Shell 145‐Atom Metal‐Core Geometry of Pseudo Icosahedral Symmetry , 2000 .

[62]  T. Proffen,et al.  Measuring Correlated Atomic Motion Using X-ray Diffraction , 1999 .

[63]  Peter W. Stephens,et al.  Structural evolution of smaller gold nanocrystals: The truncated decahedral motif , 1997 .

[64]  R. Whetten,et al.  Critical sizes in the growth of Au clusters , 1997 .

[65]  Peter W. Stephens,et al.  Nanocrystal gold molecules , 1996 .

[66]  L. Marks Experimental studies of small particle structures , 1994 .

[67]  L. Marks Surface structure and energetics of multiply twinned particles , 1984 .

[68]  E. G. Sherry,et al.  STRUCTURE DETERMINATION I , 1960 .

[69]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[70]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .

[71]  Christopher J. Kiely,et al.  Synthesis and reactions of functionalised gold nanoparticles , 1995 .

[72]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .