NONVOLATILE SPINTRONICS: PERSPECTIVES ON INSTANT-ON NONVOLATILE NANOELECTRONIC SYSTEMS

Instant-on nonvolatile electronics, which can be powered on/off instantaneously without the loss of information, represents a new and emerging paradigm in electronics. Nonvolatile circuits consisting of volatile CMOS, combined with nonvolatile nanoscale magnetic memory, can make electronics nonvolatile at the gate, circuit and system levels. When high speed magnetic memory is embedded in CMOS logic circuits, it may help resolve the two major challenges faced in continuing CMOS scaling: Power dissipation and variability of devices. We will give a brief overview of the current challenges of CMOS in terms of energy dissipation and variability. Then, we describe emerging nonvolatile memory (NVM) options, particularly those spintronic solutions such as magnetoresistive random access memory (MRAM) based on spin transfer torque (STT) and voltage-controlled magnetoelectric (ME) write mechanisms. We will then discuss the use of STT memory for embedded application, e.g., replacing volatile CMOS Static RAM (SRAM), followed by discussion of integration of CMOS reconfigurable circuits with STT-RAM. We will then present the scaling limits of the STT memory and discuss its critical performance parameters, particularly related to switching energy. To further reduce the switching energy, we present the concept of electric field control of magnetism, and discuss approaches to realize this new mechanism in realizing low switching energy, allowing for implementation of nonvolatility at the logic gate level, and eventually at the transistor level with a magnetoelectric gate (MeGate). For nonvolatile logic (NVL), we present and discuss as an example an approach using interference of spin waves, which will have NVL operations remembering the state of computation. Finally, we will discuss the potential impact and implications of this new paradigm on low energy dissipation instant-on nonvolatile systems.

[1]  Masashi Shiraishi,et al.  Voltage-Assisted Magnetization Switching in Ultrathin Fe80Co20 Alloy Layers , 2009 .

[2]  Mircea R. Stan,et al.  Relaxing non-volatility for fast and energy-efficient STT-RAM caches , 2011, 2011 IEEE 17th International Symposium on High Performance Computer Architecture.

[3]  S. Fukami,et al.  Electrical control of the ferromagnetic phase transition in cobalt at room temperature. , 2011, Nature materials.

[4]  Eric E. Fullerton,et al.  Reducing the critical current for spin-transfer switching of perpendicularly magnetized nanomagnets , 2009 .

[5]  Tao Wu,et al.  Electrical control of reversible and permanent magnetization reorientation for magnetoelectric memory devices , 2011 .

[6]  Los Angeles,et al.  Energy-Performance Characterization of CMOS/Magnetic Tunnel Junction (MTJ) Hybrid Logic Circuits , 2011 .

[7]  Ralph,et al.  Current-induced switching of domains in magnetic multilayer devices , 1999, Science.

[8]  S. Yuasa,et al.  Influence of perpendicular magnetic anisotropy on spin-transfer switching current in CoFeB∕MgO∕CoFeB magnetic tunnel junctions , 2009 .

[9]  J. Nowak,et al.  Spin torque switching of perpendicular Ta∣CoFeB∣MgO-based magnetic tunnel junctions , 2011 .

[10]  H. Ohno,et al.  Fabrication of a Nonvolatile Full Adder Based on Logic-in-Memory Architecture Using Magnetic Tunnel Junctions , 2008 .

[11]  Hyungsoon Shin,et al.  A Full Adder Design Using Serially Connected Single-Layer Magnetic Tunnel Junction Elements , 2008, IEEE Transactions on Electron Devices.

[12]  Gopalan Srinivasan,et al.  Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides , 2001 .

[13]  Ilya Krivorotov,et al.  Switching current reduction using perpendicular anisotropy in CoFeB-MgO magnetic tunnel junctions , 2011 .

[14]  Wolfgang Porod,et al.  Investigation of shape-dependent switching of coupled nanomagnets , 2003 .

[15]  Yoichi Shiota,et al.  Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. , 2011, Nature materials.

[16]  Kang L. Wang,et al.  Non-volatile magnonic logic circuits engineering , 2010, 1012.4768.

[17]  Bernard Rodmacq,et al.  100 ps precessional spin-transfer switching of a planar magnetic random access memory cell with perpendicular spin polarizer , 2009 .

[18]  Jonathan Z. Sun Spin-current interaction with a monodomain magnetic body: A model study , 2000 .

[19]  J. Slaughter Recent Advances in MRAM Technology , 2007, 2007 65th Annual Device Research Conference.

[20]  Dejan Markovic,et al.  True Energy-Performance Analysis of the MTJ-Based Logic-in-Memory Architecture (1-Bit Full Adder) , 2010, IEEE Transactions on Electron Devices.

[21]  Wei-gang Wang,et al.  Electric-field-assisted switching in magnetic tunnel junctions. , 2012, Nature materials.

[22]  Jian-Ping Wang,et al.  A spintronics full adder for magnetic CPU , 2005 .

[23]  Hisashi Shima,et al.  Resistive Random Access Memory (ReRAM) Based on Metal Oxides , 2010, Proceedings of the IEEE.

[24]  M. Kostylev,et al.  Spin-wave logical gates , 2005 .

[25]  Ilya Krivorotov,et al.  Low writing energy and sub nanosecond spin torque transfer switching of in-plane magnetic tunnel junction for spin torque transfer random access memory , 2011 .

[26]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.

[27]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[28]  M. Kostylev,et al.  Realization of spin-wave logic gates , 2007, 0711.4720.

[29]  Kang L. Wang,et al.  A Three-Terminal Spin-Wave Device for Logic Applications , 2008, 0810.5589.

[30]  Wolfgang Porod,et al.  Nanocomputing by field-coupled nanomagnets , 2002 .

[31]  Mircea R. Stan,et al.  Advances and Future Prospects of Spin-Transfer Torque Random Access Memory , 2010, IEEE Transactions on Magnetics.

[32]  Hideo Ohno,et al.  Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures , 2010 .

[33]  J. Katine,et al.  Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices , 2010 .

[34]  Seung H. Kang,et al.  Development of Embedded STT-MRAM for Mobile System-on-Chips , 2011, IEEE Transactions on Magnetics.

[35]  Junhao Chu,et al.  Surface magnetoelectric effect in ferromagnetic metal films. , 2008, Physical review letters.

[36]  J. Katine,et al.  Current-induced magnetization reversal in nanopillars with perpendicular anisotropy , 2006 .

[37]  H. Meng,et al.  Spin transfer in nanomagnetic devices with perpendicular anisotropy , 2006 .

[38]  Luan Tran,et al.  45nm low power CMOS logic compatible embedded STT MRAM utilizing a reverse-connection 1T/1MTJ cell , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[39]  J. Gilman,et al.  Nanotechnology , 2001 .

[40]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[41]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[42]  K.L. Wang,et al.  Spin Wave Magnetic NanoFabric: A New Approach to Spin-Based Logic Circuitry , 2008, IEEE Transactions on Magnetics.

[43]  Bernard Dieny,et al.  Improved coherence of ultrafast spin-transfer-driven precessional switching with synthetic antiferromagnet perpendicular polarizer , 2011 .

[44]  Ralph,et al.  Current-driven magnetization reversal and spin-wave excitations in Co /Cu /Co pillars , 1999, Physical review letters.

[45]  Kang L. Wang,et al.  Electric-field-induced spin wave generation using multiferroic magnetoelectric cells , 2014 .

[46]  S. Watts,et al.  Latest Advances and Roadmap for In-Plane and Perpendicular STT-RAM , 2011, 2011 3rd IEEE International Memory Workshop (IMW).

[47]  Ilya Krivorotov,et al.  Thermal stability characterization of magnetic tunnel junctions using hard-axis magnetoresistance measurements , 2011 .

[48]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[49]  William J. Gallagher,et al.  Fabrication and characterization of MgO-based magnetic tunnel junctions for spin momentum transfer switching , 2007 .

[50]  Bernard Rodmacq,et al.  Analysis of oxygen induced anisotropy crossover in Pt/Co/MOx trilayers , 2008 .

[51]  S Mukhopadhyay,et al.  A Circuit and Architecture Codesign Approach for a Hybrid CMOS–STTRAM Nonvolatile FPGA , 2011, IEEE Transactions on Nanotechnology.

[52]  Y. Huai,et al.  Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions , 2004, cond-mat/0504486.

[53]  D. Ralph,et al.  Measurement of the spin-transfer-torque vector in magnetic tunnel junctions , 2007, 0705.4207.

[54]  Peter Burke,et al.  AC performance of nanoelectronics: towards a ballistic THz nanotube transistor , 2004 .

[55]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[56]  H. Ohno,et al.  Magnetic Tunnel Junctions for Spintronic Memories and Beyond , 2007, IEEE Transactions on Electron Devices.

[57]  Kang L. Wang,et al.  Magnonic logic circuits , 2010 .

[58]  S. Datta,et al.  Interacting systems for self-correcting low power switching , 2006, cond-mat/0611569.

[59]  Kang L. Wang,et al.  Effect of resistance-area product on spin-transfer switching in MgO-based magnetic tunnel junction memory cells , 2011 .

[60]  Tetsuya Asai,et al.  A majority-logic device using an irreversible single-electron box , 2003 .

[61]  J. Slonczewski Current-driven excitation of magnetic multilayers , 1996 .

[62]  A. Tulapurkar,et al.  Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. , 2009, Nature nanotechnology.

[63]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[64]  J. Katine,et al.  Low Write-Energy Magnetic Tunnel Junctions for High-Speed Spin-Transfer-Torque MRAM , 2011, IEEE Electron Device Letters.

[65]  D. Nikonov,et al.  Strategies and tolerances of spin transfer torque switching , 2010, 1001.4578.

[66]  A. Kent,et al.  Spin-transfer-induced precessional magnetization reversal , 2004 .

[67]  Jianping Wang,et al.  Design of a spintronic arithmetic and logic unit using magnetic tunnel junctions , 2008, CF '08.

[68]  Kang L. Wang,et al.  Voltage-induced ferromagnetic resonance in magnetic tunnel junctions. , 2012, Physical review letters.

[69]  Nicholas Kioussis,et al.  Anomalous bias dependence of spin torque in magnetic tunnel junctions. , 2006, Physical review letters.

[70]  Kang L. Wang,et al.  Voltage sensitivity of Curie temperature in ultrathin metallic films , 2009 .

[71]  Paul M. Solomon,et al.  In Quest of the “Next Switch”: Prospects for Greatly Reduced Power Dissipation in a Successor to the Silicon Field-Effect Transistor , 2010, Proceedings of the IEEE.

[72]  Ilya Krivorotov,et al.  Deep subnanosecond spin torque switching in magnetic tunnel junctions with combined in-plane and perpendicular polarizers , 2011 .

[73]  Masashi Shiraishi,et al.  Voltage-induced perpendicular magnetic anisotropy change in magnetic tunnel junctions , 2010 .

[74]  Kang L. Wang,et al.  Quest of electric field controlled spintronics in MnGe , 2010 .

[75]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[76]  Wolfgang Porod,et al.  Magnetic quantum-dot cellular automata: Recent developments and prospects , 2008 .

[77]  Xufeng Kou,et al.  Voltage-controlled ferromagnetic order in MnGe quantum dots , 2010, Nanotechnology.

[78]  Robert A. Buhrman,et al.  Spin-torque-driven ballistic precessional switching with 50 ps impulses , 2011 .

[79]  S. Datta,et al.  Proposal for an all-spin logic device with built-in memory. , 2010, Nature nanotechnology.

[80]  T. Schulthess,et al.  Spin-dependent tunneling conductance of Fe | MgO | Fe sandwiches , 2001 .

[81]  Kang L. Wang,et al.  Magnetic cellular nonlinear network with spin wave bus , 2009, 2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010).

[82]  D. Nikonov,et al.  Spin gain transistor in ferromagnetic semiconductors-the semiconductor Bloch-equations approach , 2003, IEEE Transactions on Nanotechnology.

[83]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[84]  Shoji Ikeda,et al.  Standby-Power-Free Compact Ternary Content-Addressable Memory Cell Chip Using Magnetic Tunnel Junction Devices , 2009 .

[85]  Kang L. Wang,et al.  Variability of electronics and spintronics nanoscale devices , 2008 .

[86]  Robert A. Buhrman,et al.  Tunnel magnetoresistance and spin torque switching in MgO-based magnetic tunnel junctions with a Co/Ni multilayer electrode , 2010 .

[87]  Kang L. Wang,et al.  Voltage-controlled surface magnetization of itinerant ferromagnet Ni1-xCux , 2008 .

[88]  Joachim Stöhr,et al.  Magnetism From Fundamentals to Nanoscale Dynamics , 2006 .

[89]  D. Ralph,et al.  Reduction of the spin-torque critical current by partially canceling the free layer demagnetization field , 2009 .

[90]  Snider,et al.  Digital logic gate using quantum-Dot cellular automata , 1999, Science.

[91]  Chih-Kong Ken Yang,et al.  Energy-Performance Characterization of CMOS / Magnetic Tunnel Junction ( MTJ ) Hybrid Logic Circuits , 2011 .

[92]  V. Metlushko,et al.  Magnetic QCA systems , 2005, Microelectron. J..

[93]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.