The Glaciers Climate Change Initiative : Algorithms for creating glacier area , elevation change and velocity products

Glaciers and their changes are increasingly monitored from a wide range of satellite sensors. Due to the often remote location of glaciers in inaccessible and high-mountain terrain, satellite observations complement ground-based measurements very well. Furthermore, satellite data provide observations of glacier characteristics that are difficult to monitor from ground. In the Glaciers_cci project three of these well-observable characteristics are investigated in detail: glacier area, elevation changes (ELC) and surface velocity (VEL). We use optical sensors to automatically derive area, digital elevation models from two points in time and repeat altimetry for ELC, and optical and microwave imaging sensors for VEL. For the latter, the two sensor types again provide complimentary information in regard to their spatio-temporal coverage. While some products can be generated largely automatically (ELC from altimetry and VEL), the others require interaction by the analyst. Largely based on round robin experiments for each of the products, we suggest in this contribution the most suitable algorithms for product creation and describe them here along with remarks on their practical implementation. In many cases the details on the latter are even more important for creation of high-quality products than the basic algorithm itself.

[1]  Aparna Shukla,et al.  Synergistic approach for mapping debris-covered glaciers using optical–thermal remote sensing data with inputs from geomorphometric parameters , 2010 .

[2]  B. Menounos,et al.  Recent volume loss of British Columbian glaciers, Canada , 2007 .

[3]  Siri Jodha Singh Khalsa,et al.  The GLIMS geospatial glacier database: A new tool for studying glacier change ☆ , 2007 .

[4]  T. Albert,et al.  Evaluation of Remote Sensing Techniques for Ice-Area Classification Applied to the Tropical Quelccaya Ice Cap, Peru , 2002 .

[5]  T. Bolch,et al.  The first complete glacier inventory for the whole of Greenland , 2012 .

[6]  Jon Ove Hagen,et al.  Geometric changes and mass balance of the Austfonna ice cap, Svalbard , 2009 .

[7]  R. Barry,et al.  Optical Remote Sensing of Glacier Characteristics: A Review with Focus on the Himalaya , 2008, Sensors.

[8]  Y. Arnaud,et al.  Slight mass gain of Karakoram glaciers in the early twenty-first century , 2012 .

[9]  Samjwal Ratna Bajracharya,et al.  The Status of Glaciers in the Hindu Kush-Himalayan Region , 2011 .

[10]  B. Denby,et al.  Spatially integrated geodetic glacier mass balance and its uncertainty based on geostatistical analysis: application to the western Svartisen ice cap, Norway , 2009, Journal of Glaciology.

[11]  R. Finsterwalder Photogrammetry and Glacier Research with Special Reference to Glacier Retreat in the Eastern Alps , 1954 .

[12]  Kenneth C. Jezek,et al.  Robust multi-scale image matching for deriving ice surface velocity field from sequential satellite images , 2012 .

[13]  Y. Weidmann,et al.  Remote sensing of glacier- and permafrost-related hazards in high mountains: an overview , 2005 .

[14]  Felix Morsdorf,et al.  Uncertainty assessment of multi-temporal airborne laser scanning data: A case study on an Alpine glacier , 2012 .

[15]  Mònica Roca,et al.  The EnviSat RA-2 Instrument Design and Tracking Performance , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Tobias Bolch,et al.  Mapping of debris-covered glaciers in the Garhwal Himalayas using ASTER DEMs and thermal data , 2011 .

[17]  G. Østrem,et al.  Erts Data in Glaciology—An Effort to Monitor Glacier Mass Balance from Satellite Imagery , 1975, Journal of Glaciology.

[18]  R. Mathieu,et al.  Assessment of multispectral glacier mapping methods and derivation of glacier area changes, 1978–2002, in the central Southern Alps, New Zealand, from ASTER satellite data, field survey and existing inventory data , 2011, Journal of Glaciology.

[19]  E. Rodríguez,et al.  A Global Assessment of the SRTM Performance , 2006 .

[20]  Stuart H. Marsh,et al.  Assessment of Glacier Volume Change Using ASTER-Based Surface Matching of Historical Photography , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Dominique Derauw,et al.  DInSAR and Coherence Tracking Applied to Glaciology : The Example of Shirase , 1999 .

[22]  Misganu Debella-Gilo,et al.  Locally adaptive template sizes for matching repeat images of mass movements , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[23]  Ian R. Joughin,et al.  Interferometric estimation of three-dimensional ice-flow using ascending and descending passes , 1998, IEEE Trans. Geosci. Remote. Sens..

[24]  Johan J. Mohr,et al.  Three-dimensional glacial flow and surface elevation measured with radar interferometry , 1998, Nature.

[25]  Richard S. Williams Book review: Remote sensing of mountain glaciers and permafrost creep , 2007, Journal of Glaciology.

[26]  L. Cox,et al.  Comparison of geodetic and glaciological mass-balance techniques, Gulkana Glacier, Alaska, U.S.A. , 2004, Journal of Glaciology.

[27]  R. Scharroo,et al.  Antarctic elevation change from 1992 to 1996 , 1998, Science.

[28]  Eric Rignot,et al.  North and northeast Greenland ice discharge from satellite radar interferometry , 1997 .

[29]  F. Paul,et al.  A new glacier inventory for the European Alps from Landsat TM scenes of 2003: challenges and results , 2011, Annals of Glaciology.

[30]  Brian Menounos,et al.  Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery , 2010 .

[31]  Y. Arnaud,et al.  Biases of SRTM in high‐mountain areas: Implications for the monitoring of glacier volume changes , 2006 .

[32]  A. Ohmura,et al.  Mass balance of glaciers and ice caps: Consensus estimates for 1961–2004 , 2006 .

[33]  Marc Bernard,et al.  SPIRIT. SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies during the fourth International Polar Year (2007-2009) , 2008 .

[34]  P. Holmlund,et al.  Reanalysis of multi-temporal aerial images of Storglaciären, Sweden (1959–99) – Part 2: Comparison of glaciological and volumetric mass balances , 2010 .

[35]  S. Leprince,et al.  Glacier-surface velocities in alpine terrain from optical satellite imagery—Accuracy improvement and quality assessment , 2008 .

[36]  Frank Paul,et al.  Comparison of TM Derived Glacier Areas With Higher Resolution Data Sets , 2001 .

[37]  Andrew Shepherd,et al.  Recent Sea-Level Contributions of the Antarctic and Greenland Ice Sheets , 2007, Science.

[38]  Zhen Li,et al.  Comparison of SAR and optical data in deriving glacier velocity with feature tracking , 2011 .

[39]  P. Skvarca,et al.  Monitoring ice shelf velocities from repeat MODIS and Landsat data - a method study on the Larsen C ice shelf, Antarctic Peninsula, and 10 other ice shelves around Antarctica , 2010 .

[40]  Adrian A. Borsa,et al.  Assessment of ICESat performance at the salar de Uyuni, Bolivia , 2005 .

[41]  P. Chevallier,et al.  Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India) , 2007 .

[42]  Bas Altena,et al.  Estimating the long-term calving flux of Kronebreen, Svalbard, from geodetic elevation changes and mass-balance modeling , 2012, Journal of Glaciology.

[43]  Dorothy K. Hall,et al.  Characterization of Snow and Ice Reflectance Zones On Glaciers Using Landsat Thematic Mapper Data , 1987, Annals of Glaciology.

[44]  Tim R. McVicar,et al.  The impact of misregistration on SRTM and DEM image differences , 2008 .

[45]  Andreas Kääb,et al.  Perspectives on the production of a glacier inventory from multispectral satellite data in Arctic Canada: Cumberland Peninsula, Baffin Island , 2005, Annals of Glaciology.

[46]  Carsten Braun,et al.  Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago , 2011, Nature.

[47]  Andreas Kääb,et al.  Glacier Volume Changes Using ASTER Satellite Stereo and ICESat GLAS Laser Altimetry. A Test Study on EdgeØya, Eastern Svalbard , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[48]  Ron Kwok,et al.  A Mini-Surge on the Ryder Glacier, Greenland, Observed by Satellite Radar Interferometry , 1996, Science.

[49]  T. Bolch,et al.  Landsat-based inventory of glaciers in western Canada, 1985-2005 , 2010 .

[50]  U. Wegmuller,et al.  Precision estimation of local offsets between pairs of SAR SLCs and detected SAR images , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[51]  Franz J. Meyer,et al.  Using L-band SAR coherence to delineate glacier extent , 2010 .

[52]  Ian M. Howat,et al.  Efficient Automated Glacier Surface Velocity Measurement From Repeat Images Using Multi-Image/Multichip and Null Exclusion Feature Tracking , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[53]  Y. Arnaud,et al.  Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas , 2012, Nature.

[54]  B. Bookhagen,et al.  Spatially variable response of Himalayan glaciers to climate change affected by debris cover , 2011 .

[55]  Andreas Kääb,et al.  Landsat-derived glacier inventory for Jotunheimen, Norway, and deduced glacier changes since the 1930s , 2008 .

[56]  Michael A. Wulder,et al.  Opening the archive: How free data has enabled the science and monitoring promise of Landsat , 2012 .

[57]  T. Bolch,et al.  A new satellite-derived glacier inventory for western Alaska , 2010, Annals of Glaciology.

[58]  J. Moore,et al.  Spatial distribution and change in the surface ice‐velocity field of vestfonna ice cap, nordaustlandet, svalbard, 1995–2010 using geodetic and satellite interferometry data , 2011 .

[59]  Ian Joughin,et al.  Ice-sheet velocity mapping: a combined interferometric and speckle-tracking approach , 2002, Annals of Glaciology.

[60]  Roger Wheate,et al.  Randolph Glacier Inventory [v2.0]: A Dataset of Global Glacier Outlines , 2012 .

[61]  Andreas Kääb,et al.  Flow field of Kronebreen, Svalbard, using repeated Landsat 7 and ASTER data , 2005, Annals of Glaciology.

[62]  R. Michel,et al.  Flow of Glaciar Moreno, Argentina, from repeat-pass Shuttle Imaging Radar images: comparison of the phase correlation method with radar interferometry , 1999, Journal of Glaciology.

[63]  A. Kääb,et al.  Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change , 2011 .

[64]  D. Vaughan,et al.  Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets , 2009, Nature.

[65]  Masamu Aniya,et al.  The use of satellite and airborne imagery to inventory outlet glaciers of the Southern Patagonia Icefield, South America , 1996 .

[66]  Interactive comment on “Brief Communication: Greenland’s shrinking ice cover: “fast times” but not that fast” by J. S. Kargel et al , 2012 .

[67]  F. Paul,et al.  Changes in glacier area in Tyrol, Austria, between 1969 and 1992 derived from Landsat 5 Thematic Mapper and Austrian Glacier Inventory data , 2002 .

[68]  T. Bolch,et al.  Planimetric and volumetric glacier changes in the Khumbu Himal, Nepal, since 1962 using Corona, Landsat TM and ASTER data , 2008 .

[69]  Alvin Simms,et al.  Recession of the southern part of Barnes Ice Cap, Baffin Island, Canada, between 1961 and 1993, determined from digital mapping of Landsat TM , 1997 .

[70]  Andreas Kääb,et al.  Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds , 2012 .

[71]  E. Berthiera,et al.  Surface motion of mountain glaciers derived from satellite optical imagery , 2005 .

[72]  Duncan J. Wingham,et al.  On the recent elevation changes at the Flade Isblink Ice Cap, northern Greenland , 2011 .

[73]  Christopher Nuth,et al.  Recent elevation changes of Svalbard glaciers derived from ICESat laser altimetry , 2010 .

[74]  L. Hinzman,et al.  Observations: Changes in Snow, Ice and Frozen Ground , 2007 .

[76]  A. Kääb,et al.  Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery , 2011 .

[77]  Methods The new remote-sensing-derived Swiss glacier inventory : I . , 2017 .

[78]  Stuart Marsh,et al.  Multi‐decadal glacier surface lowering in the Antarctic Peninsula , 2012 .

[79]  Paul E. Geissler,et al.  Glacier Changes in Southeast Alaska and Northwest British Columbia and Contribution to Sea Level Rise , 2007 .

[80]  Roger G. Barry,et al.  Recommendations for the compilation of glacier inventory data from digital sources , 2009, Annals of Glaciology.

[81]  A. Kääb Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Bhutan Himalaya , 2005 .

[82]  Andreas Kääb,et al.  Svalbard glacier elevation changes and contribution to sea level rise , 2010 .

[83]  P. Vachon,et al.  InSAR results from the RADARSAT Antarctic Mapping Mission data: estimation of glacier motion using a simple registration procedure , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[84]  Michael E. Schaepman,et al.  Sentinels for science: potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere, and land , 2012 .

[85]  Optical remote sensing of glaciers , 2010 .

[86]  Dorothy K. Hall,et al.  Comparison of satellite-derived with ground-based measurements of the fluctuations of the margins of Vatnajökull, Iceland, 1973–92 , 1997, Annals of Glaciology.

[87]  Frank Paul,et al.  Calculation of glacier elevation changes with SRTM: is there an elevation-dependent bias? , 2008, Journal of Glaciology.

[88]  H. Rott Analyse der Schneeflächen auf Gletschern der tiroler Zentralalpen aus Landsat-Bildern , 1976 .

[89]  R. Goldstein,et al.  Satellite Radar Interferometry for Monitoring Ice Sheet Motion: Application to an Antarctic Ice Stream , 1993, Science.

[90]  Sébastien Leprince,et al.  Mountain glacier velocity variation during a retreat/advance cycle quantified using sub-pixel analysis of ASTER images , 2011, Journal of Glaciology.

[91]  Helmut Rott,et al.  Thematic studies in alpine areas by means of polarimetric SAR and optical imagery , 1994 .

[92]  J. VanLooy,et al.  Glacial changes of five southwest British Columbia icefields, Canada, mid-1980s to 1999 , 2008, Journal of Glaciology.

[93]  Stuart Marsh,et al.  A robust surface matching technique for coastal geohazard assessment and management , 2008 .

[94]  Y. Arnaud,et al.  Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing , 2012 .

[95]  J. Dozier Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper , 1989 .

[96]  J G Marsh,et al.  Growth of Greenland Ice Sheet: Measurement , 1989, Science.

[97]  F. Paul,et al.  Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results , 2012 .

[98]  Matthew E. Pritchard,et al.  Ice loss rates at the Northern Patagonian Icefield derived using a decade of satellite remote sensing , 2012 .

[99]  Dorothy K. Hall,et al.  Observations on glaciers in the eastern Austrian Alps using satellite data , 1994 .

[100]  A. Gruen,et al.  Least squares 3D surface and curve matching , 2005 .

[101]  Dorothy K. Hall,et al.  Analysis of glacier facies using satellite techniques , 1991, Journal of Glaciology.

[102]  Frank Paul,et al.  Spatial variability of glacier elevation changes in the Swiss Alps obtained from two digital elevation models , 2008 .

[103]  Theodore A. Scambos,et al.  Mass loss of Larsen B tributary glaciers (Antarctic Peninsula) unabated since 2002 , 2012 .