A Fractal Evolutionary Particle Swarm Optimizer

A Fractal Evolutionary Particle Swarm Optimization (FEPSO) is proposed based on the classical particle swarm optimization (PSO) algorithm. FEPSO applies the fractal Brownian motion model used to describe the irregular movement characteristics to simulate the optimization process varying in unknown mode, and include the implied trends to go to the global optimum. This will help the individual to escape from searching optimum too randomly and precociously. Compared with the classical PSO algorithm, each particle contains a fractal evolutionary phase in FEPSO. In this phase, each particle simulates a fractal Brownian motion with an estimated Hurst parameter to search the optimal solution in each sub dimensional space, and update correspond sub location. The simulation experiments show that this algorithm has a robust global search ability for most standard composite test functions. Its optimization ability performs much better than most recently proposed improved algorithm based on PSO.

[1]  Peter J. Angeline,et al.  Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Differences , 1998, Evolutionary Programming.

[2]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[3]  Andries Petrus Engelbrecht,et al.  A Cooperative approach to particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[4]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[5]  B. Øksendal,et al.  FRACTIONAL WHITE NOISE CALCULUS AND APPLICATIONS TO FINANCE , 2003 .

[6]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[7]  James Kennedy,et al.  Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[8]  Kalyan Veeramachaneni,et al.  Fitness-distance-ratio based particle swarm optimization , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[9]  M. Clerc,et al.  The swarm and the queen: towards a deterministic and adaptive particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[10]  Xuemei Ren,et al.  The random factor in Particle Swarm Optimiazation , 2009, 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems.

[11]  P. J. Angeline,et al.  Using selection to improve particle swarm optimization , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[12]  Ji Zhen A Novel Intelligent Single Particle Optimizer , 2010 .

[13]  Ling Zhang,et al.  A Novel Hybrid Stochastic Searching Algorithm Based on ACO and PSO: A Case Study of LDR Optimal Design , 2011, J. Softw..

[14]  Liangyou Shu,et al.  A Modified PSO to Optimize Manufacturers Production and Delivery , 2012, J. Softw..

[15]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[16]  R. Eberhart,et al.  Fuzzy adaptive particle swarm optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[17]  Jing J. Liang,et al.  Novel composition test functions for numerical global optimization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..