Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer.

An all-fiber wavelength-division multiplexer (WDM) based on the nonreciprocity of the birefringence to the polarization states is proposed. The transfer function of a Sagnac interferometer is wavelength dependent if the loop birefringence of the interferometer consists of both circular and linear parts. Theoretical analysis shows that the output characteristics of this WDM are similar to those of a fiber taper-based device. Both the bandwidth and the peak wavelength of the new WDM can be tuned by changing the loop birefringence. Experimental prototypes exhibit a channel isolation greater than 25 dB with peak passband insertion loss of less than 1 dB.