Rerooting Multi-type Branching Trees: The Infinite Spine Case

We prove local convergence results of rerooted conditioned multi-type Galton-Watson trees. The limit objects are multitype variants of the random sin-tree constructed by Aldous (1991), and differ according to which types recur infinitely often along the backwards growing spine. We apply our results to prove quenched local convergence of conditioned Boltzmann planar maps, sharpening a local convergence theorem by Stephenson~(2018).

[1]  Michael Drmota,et al.  Limiting Distributions in Branching Processes with Two Types of Particles , 1997 .

[2]  Marc Noy,et al.  Graph classes with given 3‐connected components: Asymptotic enumeration and random graphs , 2009, Random Struct. Algorithms.

[3]  Svante Janson,et al.  Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation , 2011, 1112.0510.

[4]  V. Wachtel,et al.  Multi-type subcritical branching processes in a random environment , 2018, Advances in Applied Probability.

[5]  Maxim Krikun,et al.  Local structure of random quadrangulations , 2005, math/0512304.

[6]  Benedikt Stufler,et al.  Graphon convergence of random cographs , 2019, Random Struct. Algorithms.

[7]  I. Kortchemski,et al.  The geometry of random minimal factorizations of a long cycle , 2017, 1712.06542.

[8]  Marc Noy,et al.  On the Diameter of Random Planar Graphs , 2012, Combinatorics, Probability and Computing.

[9]  V. Vatutin A conditional functional limit theorem for decomposable branching processes with two types of particles , 2017 .

[10]  Omer Angel,et al.  Uniform Infinite Planar Triangulations , 2002 .

[11]  Benedikt Stufler Random Enriched Trees with Applications to Random Graphs , 2018, Electron. J. Comb..

[12]  R. Abraham,et al.  Critical Multi-type Galton–Watson Trees Conditioned to be Large , 2015, 1511.01721.

[13]  Benedikt Stufler,et al.  Local Limits of Large Galton-Watson Trees Rerooted at a Random Vertex , 2016, AofA.

[14]  Decomposable branching processes with a fixed extinction moment , 2015 .

[15]  Stanley Burris,et al.  Counting Rooted Trees: The Universal Law t(n)~C ρ-n n-3/2 , 2006, Electron. J. Comb..

[16]  Jakob E. Bjornberg,et al.  Recurrence of bipartite planar maps , 2013, 1311.0178.

[17]  Sarah Eichmann,et al.  Mathematics And Computer Science Algorithms Trees Combinatorics And Probabilities , 2016 .

[18]  Asymptotic Behavior of Critical Primitive Multi-Type Branching Processes with Immigration , 2012, 1205.0388.

[19]  Sophie P'enisson Beyond the Q-process: various ways of conditioning the multitype Galton-Watson process , 2014, 1412.3322.

[20]  Grégory Miermont,et al.  An invariance principle for random planar maps , 2006 .

[21]  Sigurdur Orn Stef'ansson,et al.  Scaling limits of random planar maps with a unique large face , 2012, 1212.5072.

[22]  Benedikt Stufler,et al.  Gibbs partitions: The convergent case , 2016, Random Struct. Algorithms.

[23]  S. Foss,et al.  An Introduction to Heavy-Tailed and Subexponential Distributions , 2011 .

[24]  Benedikt Stufler,et al.  Local Convergence of Random Planar Graphs , 2019, Trends in Mathematics.

[25]  Benedikt Stufler,et al.  Quenched Local Convergence of Boltzmann Planar Maps , 2021, Journal of Theoretical Probability.

[26]  Lajos Takács,et al.  A Generalization of the Ballot Problem and its Application in the Theory of Queues , 1962 .

[27]  Loïc de Raphélis Scaling limit of multitype Galton-Watson trees with infinitely many types , 2014, 1405.3916.

[28]  Philippe Di Francesco,et al.  Planar Maps as Labeled Mobiles , 2004, Electron. J. Comb..

[29]  G. Miermont Invariance principles for spatial multitype Galton–Watson trees , 2006, math/0610807.

[30]  David Aldous,et al.  Asymptotic Fringe Distributions for General Families of Random Trees , 1991 .

[31]  S. Janson,et al.  Sesqui-type branching processes , 2017, Stochastic Processes and their Applications.

[32]  Benedikt Stufler Limits of random tree-like discrete structures , 2016, Probability Surveys.

[33]  J. Bell,et al.  Counting Rooted Trees: The Universal Law $t(n)\,\sim\,C \rho^{-n} n^{-3/2}$ , 2006 .

[34]  Laurent M'enard,et al.  Percolation on uniform infinite planar maps , 2013, 1302.2851.

[36]  O. Riordan,et al.  The phase transition in bounded-size Achlioptas processes , 2017, 1704.08714.

[37]  Robin Stephenson,et al.  Local Convergence of Large Critical Multi-type Galton–Watson Trees and Applications to Random Maps , 2014, 1412.6911.

[38]  Nicolas Curien,et al.  A view from infinity of the uniform infinite planar quadrangulation , 2012, 1201.1052.

[39]  Michael Drmota,et al.  Pattern occurrences in random planar maps , 2018 .