Advances in Fe(VI) charge storage: Part II. Reversible alkaline super-iron batteries and nonaqueous super-iron batteries

Abstract Reversible thin film Fe(VI/III) cathodic charge/discharge storage in alkaline batteries is presented. Whereas ultra-thin (e.g., 3 nm) Fe(VI/III) films exhibit a high degree of reversibility, thicker films are increasingly passive toward the Fe(VI) charge transfer. An extended conductive matrix facilitates a 100-fold enhancement in charge storage for reversible Fe(VI/III) super-iron thin films. The thicker (100s of nanometers) films deposited on extended conductive matrixes composed of high-surface-area Pt, Ti, and Au can sustain high reversibility, which provides the possibility of using Fe(VI) salts as the cathode materials for rechargeable Fe(VI)/metal hydride batteries. Super-iron cathodes can also be discharged in conjunction with a Li anode in nonaqueous media. Optimization of the nonaqueous primary super-iron/Li batteries is summarized. Fe(VI) cathodes are also reversible in nonaqueous electrolyte systems. The charge/discharge process of super-iron cathodes in nonaqueous media involves both the lithiation/delithiation of the active mass and the reduction/oxidation of the Fe(VI/III), while only the thin film Fe(VI/III) electrodes can sustain high reversibility involving the full theoretical capacity in the nonaqueous batteries.

[1]  Jeyong Yoon,et al.  Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. , 2003, Environmental science & technology.

[2]  S. Licht,et al.  Rapid chemical synthesis of the barium ferrate super-iron Fe (VI) compound, BaFeO4 , 2002 .

[3]  S. Licht,et al.  Cathodic Charge Transfer and Analysis of Cs2FeO4 , K 2FeO4 , and Mixed Alkali Fe(VI) Ferrate Super-irons , 2004 .

[4]  P. Laszlo,et al.  A Novel Oxidizing Reagent Based on Potassium Ferrate(VI)(1). , 1996, The Journal of organic chemistry.

[5]  Xingwen Yu,et al.  Electrochemical alkaline Fe(VI) water purification and remediation. , 2005, Environmental science & technology.

[6]  K. Bouzek,et al.  The cyclic voltammetric study of ferrate(VI) production , 1997 .

[7]  A. Kamnev,et al.  Electrocatalysis of anodic oxygen evolution at the nickel hydroxide electrode by ferric hydroxo species in alkaline electrolytes , 1992 .

[8]  A. Fujishima,et al.  Electrochemical generation of ferrate in acidic media at boron-doped diamond electrodes. , 2002, Chemical communications.

[9]  D. Aurbach,et al.  Study of Various (“Super Iron”) MFeO4 Compounds in Li Salt Solutions as Potential Cathode Materials for Li Batteries , 2006 .

[10]  S. Mukerjee,et al.  Reversible Behavior of K 2Fe ( VI ) O 4 in Aqueous Media In Situ Mössbauer and Synchrotron X-Ray Spectroscopy Studies , 2003 .

[11]  S. Mentus Electrochemical response of a composite Pt/TiO2 layer formed potentiodynamically on titanium surfaces , 2005 .

[12]  S. Licht,et al.  Fe(VI) Catalyzed Manganese Redox Chemistry: Permanganate and Super-Iron Alkaline Batteries , 2001 .

[13]  S. Licht,et al.  Rechargeable Fe(III/VI) super-iron cathodes. , 2004, Chemical communications.

[14]  S. Licht,et al.  Nonaqueous Phase Fe ( VI ) Electrochemical Storage and Discharge of Super‐Iron/Lithium Primary Batteries , 1999 .

[15]  W. Yang,et al.  Studies on the electrochemical characteristics of K2Sr(FeO4)2 electrode , 2002 .

[16]  Q. Dong,et al.  Charge Storage Effects in Alkaline Cathodes Containing Fluorinated Graphite , 2001 .

[17]  S. Licht,et al.  Conductive-matrix-mediated alkaline Fe(III/VI) charge transfer: three-electron storage, reversible super-iron thin film cathodes. , 2006, The journal of physical chemistry. B.

[18]  S. Licht,et al.  Insoluble Fe(VI) compounds: effects on the super-iron battery , 1999 .

[19]  S. Licht,et al.  Hydroxide Activated AgMnO4 Alkaline Cathodes, Alone and in Combination with Fe(VI) Super-Iron, BaFeO4 , 2001 .

[20]  S. Licht,et al.  High power BaFe(VI)O4/MnO2 composite cathode alkaline super-iron batteries , 2002 .

[21]  D. Bélanger,et al.  The electrochemical generation of ferrate at pressed iron powder electrodes: effect of various operating parameters , 2003 .

[22]  S. Licht,et al.  Enhanced Fe(VI) cathode conductance and charge transfer: effects on the super-iron battery , 2000 .

[23]  A. Chao,et al.  Quality improvement of biosolids by ferrate(VI) oxidation of offensive odour compounds , 1996 .

[24]  S. Licht,et al.  Enhancement of Nonaqueous Fe(VI) Super-iron Primary Cathodic Charge Transfer , 2003 .

[25]  S. Licht,et al.  Solid phase modifiers of the Fe(VI) cathode: effects on the super-iron battery , 1999 .

[26]  Xingwen Yu,et al.  Cathodic chemistry of high performance Zr coated alkaline materials. , 2006, Chemical communications.

[27]  Licht,et al.  Energetic Iron(VI) chemistry: the super-iron battery , 1999, Science.

[28]  D. Aurbach,et al.  Mössbauer spectroscopic studies of the disintegration of hexavalent iron compounds (BaFeO4 and K2FeO4) , 2005 .

[29]  S. Licht,et al.  Toward Efficient Electrochemical Synthesis of Fe(VI) Ferrate and Super-Iron Battery Compounds , 2004 .

[30]  S. Licht,et al.  Chemical synthesis of battery grade super-iron barium and potassium Fe(VI) ferrate compounds , 2001 .

[31]  S. Licht,et al.  Direct electrochemical preparation of solid Fe(VI) ferrate, and super-iron battery compounds , 2002 .

[32]  S. Ovshinsky,et al.  A Nickel Metal Hydride Battery for Electric Vehicles , 1993, Science.

[33]  Jianjun Chen,et al.  Analysis of ferrate(VI) compounds and super-iron Fe(VI) battery cathodes: FTIR, ICP, titrimetric, XRD, UV/VIS, and electrochemical characterization , 2001 .

[34]  Peter J. Smith,et al.  Oxidation of substituted benzyl alcohols with ferrate(VI) ion , 1972 .

[35]  S. Licht,et al.  SrFeO4: Synthesis, Fe(VI) characterization and the strontium super-iron battery , 2001 .

[36]  S. Licht,et al.  Silver Mediation of Fe(VI) Charge Transfer: Activation of the K2FeO4 Super-iron Cathode , 2002 .

[37]  A. Wragg,et al.  Influence of electrolyte composition on current yield during ferrate(VI) production by anodic iron dissolution , 1999 .

[38]  S. Licht,et al.  Electrochemical potential tuned solar water splitting. , 2003, Chemical communications.

[39]  V. Sharma Potassium ferrate(VI): an environmentally friendly oxidant , 2002 .

[40]  D. Aurbach,et al.  The study of K2FeO4 (Fe6+-super iron compound) as a cathode material for rechargeable lithium batteries , 2005 .

[41]  Chi-Chang Hu,et al.  Voltammetric investigation of platinum oxides. I. Effects of ageing on their formation/reduction behavior as well as catalytic activities for methanol oxidation , 1999 .

[42]  Doron Aurbach,et al.  The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts , 1991 .

[43]  S. Licht,et al.  Synthesis and analysis of Ag2FeO4 Fe(VI) ferrate super-iron cathodes , 2005 .