Hamiltonian Abstract Voronoi Diagrams in Linear Time

Let V(S) be an abstract Voronoi diagram, and let H be an unbounded simple curve that visits each of its regions exactly once. Suppose that each bisector B(p, q), where p and q are in S, intersects H only once. We show that such a “Hamiltonian” diagram V(S) can be constructed in linear time, given the order of Voronoi regions of V(S) along H. This result generalizes the linear time algorithm for the Voronoi diagram of the vertices of a convex polygon. We also provide, for any δ > log60/29 2, an O(nδ)-time parallelization of the construction of the V(S) optimal in the time-processor product sense.

[1]  Richard Cole,et al.  Parallel merge sort , 1988, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[2]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[3]  Helmut Alt,et al.  Motion Planning in the CL-Environment (Extended Abstract) , 1989, WADS.

[4]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[5]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[6]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[7]  Richard Cole,et al.  Merging Free Trees in Parallel for Efficient Voronoi Diagram Construction (Preliminary Version) , 1990, ICALP.

[8]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..

[9]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..

[10]  Günter Rote Curves with increasing chords , 1994 .

[11]  Rolf Klein,et al.  Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.

[12]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[13]  Andrzej Lingas,et al.  On Computing the Voronoi Diagram for Restricted Planar Figures , 1991, WADS.

[14]  Olivier Devillers Randomization yields simple O(n log* n) algorithms for difficult Omega(n) problems , 1992, Int. J. Comput. Geom. Appl..

[15]  Kurt Mehlhorn,et al.  Randomized Incremental Construction of Abstract Voronoi Diagrams , 1993, Comput. Geom..