Optimized grid representations in curvilinear coordinates: the mapped sine Fourier method

Coordinate mapping can be used to dramatically enhance the efficiency of phase space sampling. A new mapped pseudospectral approach that readily exploits a fast transform algorithm is presented for both cylindrical and spherical coordinates. The combined use of a power law mapping and of a sine Fourier expansion requires only two fast transforms per Laplacian operation. The mapping algorithm can be symmetrized for the purpose of efficient diagonalization techniques. Special emphasis is given to the treatment of radial singularities as the new procedure is illustrated with the eigenvalue calculation of the harmonic oscillator, the Coulomb and the H2+ benchmark problems.

[1]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[2]  D. O. Harris,et al.  Calculation of Matrix Elements for One‐Dimensional Quantum‐Mechanical Problems and the Application to Anharmonic Oscillators , 1965 .

[3]  R. Meyer Trigonometric Interpolation Method for One‐Dimensional Quantum‐Mechanical Problems , 1970 .

[4]  F. Gygi,et al.  Adaptive Riemannian metric for plane-wave electronic-structure calculations , 1992 .

[5]  A. S. Dickinson,et al.  Calculation of Matrix Elements for One‐Dimensional Quantum‐Mechanical Problems , 1968 .

[6]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[7]  D. Tannor,et al.  Fast sine/cosine transform for periodic functions with reflection symmetry , 1991 .

[8]  Jan Broeckhove,et al.  Time-dependent quantum molecular dynamics , 1992 .

[9]  D. Lemoine Discrete cylindrical and spherical Bessel transforms in non-direct product representations , 1994 .

[10]  D. Colbert,et al.  A novel discrete variable representation for quantum mechanical reactive scattering via the S-matrix Kohn method , 1992 .

[11]  J. Tromp,et al.  Variational discrete variable representation , 1995 .

[12]  M. Persson,et al.  Flat surface study of the Eley–Rideal dynamics of recombinative desorption of hydrogen on a metal surface , 1995 .

[13]  Ronnie Kosloff,et al.  MAPPED FOURIER METHODS FOR LONG-RANGE MOLECULES : APPLICATION TO PERTURBATIONS IN THE RB2(0U+) PHOTOASSOCIATION SPECTRUM , 1999 .

[14]  Didier Lemoine,et al.  The discrete Bessel transform algorithm , 1994 .

[15]  Gygi Electronic-structure calculations in adaptive coordinates. , 1993, Physical review. B, Condensed matter.

[16]  R. Kosloff,et al.  A fourier method solution for the time dependent Schrödinger equation as a tool in molecular dynamics , 1983 .

[17]  Claude Leforestier,et al.  Grid method for the Wigner functions. Application to the van der Waals system Ar–H2O , 1994 .

[18]  Baer,et al.  Phase space approach for optimizing grid representations: The mapped Fourier method. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[19]  D. Lemoine Optimal treatment of diffraction coordinates in wave packet scattering from surfaces , 1994 .

[20]  Didier Lemoine,et al.  Optimal cylindrical and spherical Bessel transforms satisfying bound state boundary conditions , 1997 .

[21]  G. A. Parker,et al.  Discrete variable representations and sudden models in quantum scattering theory , 1982 .

[22]  Eli Turkel,et al.  Mappings and accuracy for Chebyshev pseudo-spectral approximations , 1992 .

[23]  M. Feit,et al.  Solution of the Schrödinger equation by a spectral method , 1982 .

[24]  Gygi Ab initio molecular dynamics in adaptive coordinates. , 1995, Physical review. B, Condensed matter.

[25]  Carl J. Williams,et al.  PHOTOASSOCIATIVE SPECTROSCOPY OF HIGHLY EXCITED VIBRATIONAL LEVELS OF ALKALI-METAL DIMERS : GREEN-FUNCTION APPROACH FOR EIGENVALUE SOLVERS , 1998 .