Correlated Topological Electronic States and Surface Magnetic Orderings in Layered MnBi2Te4

[1]  T. Okuda,et al.  Nature of the Dirac gap modulation and surface magnetic interaction in axion antiferromagnetic topological insulator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setl , 2020, Scientific Reports.

[2]  J. Ying,et al.  Mapping Dirac fermions in the intrinsic antiferromagnetic topological insulators (MnBi2Te4)(Bi2Te3)n ( n=0,1 ) , 2020, 2001.00866.

[3]  Yong Xu,et al.  Electronic states and magnetic response of MnBi2Te4 by scanning tunneling microscopy and spectroscopy. , 2020, Nano letters.

[4]  H. Xiang,et al.  Van der Waals engineering of magnetism , 2019, Nature Materials.

[5]  X. H. Chen,et al.  Magnetic and transport properties in the magnetic topological insulators MnBi2Te4(Bi2Te3)n ( n=1,2 ) , 2019, Physical Review B.

[6]  Jiaqiang Yan,et al.  Magnetic imaging of antiferromagnetic domain walls , 2019 .

[7]  Jing Pei,et al.  A New Opportunity for 2D van der Waals Heterostructures: Making Steep‐Slope Transistors , 2019, Advanced materials.

[8]  Yong Xu,et al.  High-Chern-number and high-temperature quantum Hall effect without Landau levels , 2019, National science review.

[9]  C. Chen,et al.  Topological Electronic Structure and Its Temperature Evolution in Antiferromagnetic Topological Insulator MnBi2Te4 , 2019, Physical Review X.

[10]  Yuan Wang,et al.  Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi2Te4 , 2019, Physical Review X.

[11]  Eun Mi Kim,et al.  Multiferroicity in atomic van der Waals heterostructures , 2019, Nature Communications.

[12]  Baigeng Wang,et al.  Experimental observation of the gate-controlled reversal of the anomalous Hall effect in the intrinsic magnetic topological insulator MnBi2Te4 device. , 2019, Nano letters.

[13]  Yong Xu,et al.  Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator , 2019, Nature Materials.

[14]  Chong Wang,et al.  Magnetically controllable topological quantum phase transitions in the antiferromagnetic topological insulator MnBi2Te4 , 2019, Physical Review B.

[15]  Y. Yu,et al.  Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4 , 2019, Science.

[16]  Xianhui Chen,et al.  Transport properties of thin flakes of the antiferromagnetic topological insulator MnBi2Te4 , 2019, Physical Review B.

[17]  Efthimios Kaxiras,et al.  Author Correction: Enhancement of interlayer exchange in an ultrathin two-dimensional magnet , 2019, Nature Physics.

[18]  Q. Zhang,et al.  Crystal growth and magnetic structure of MnBi2Te4 , 2019, Physical Review Materials.

[19]  Xiang Zhang,et al.  Two-dimensional magnetic crystals and emergent heterostructure devices , 2019, Science.

[20]  K. Nielsch,et al.  Chemical Aspects of the Candidate Antiferromagnetic Topological Insulator MnBi2Te4 , 2018, Chemistry of Materials.

[21]  Yu Wang,et al.  Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4 , 2018, Physical Review Research.

[22]  A. Arnau,et al.  Unique Thickness-Dependent Properties of the van der Waals Interlayer Antiferromagnet MnBi_{2}Te_{4} Films. , 2018, Physical review letters.

[23]  E. Chulkov,et al.  New Universal Type of Interface in the Magnetic Insulator/Topological Insulator Heterostructures. , 2018, Nano letters.

[24]  Yang Peng,et al.  Proximity-induced Majorana hinge modes in antiferromagnetic topological insulators , 2018, Physical Review B.

[25]  Qinghua Zhang,et al.  Experimental Realization of an Intrinsic Magnetic Topological Insulator , 2018, Chinese Physics Letters.

[26]  M. Blanco-Rey,et al.  Prediction and observation of an antiferromagnetic topological insulator , 2018, Nature.

[27]  Bing-Lin Gu,et al.  Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials , 2018, Science Advances.

[28]  Haijun Zhang,et al.  Topological Axion States in the Magnetic Insulator MnBi_{2}Te_{4} with the Quantized Magnetoelectric Effect. , 2018, Physical review letters.

[29]  J. Chu,et al.  Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors , 2018, Proceedings of the National Academy of Sciences.

[30]  Wang Yao,et al.  Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2 , 2018, Nature Materials.

[31]  Yuanbo Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[32]  Jie Shan,et al.  Controlling magnetism in 2D CrI3 by electrostatic doping , 2018, Nature Nanotechnology.

[33]  Raja Das,et al.  Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates , 2018, Nature Nanotechnology.

[34]  Hanwen Wang,et al.  Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor , 2018, Nature Nanotechnology.

[35]  Xiuling Li,et al.  Modulation of Metal and Insulator States in 2D Ferromagnetic VS2 by van der Waals Interaction Engineering , 2017, Advanced materials.

[36]  A. Arnau,et al.  Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects , 2017, 1810.00235.

[37]  Matthias Troyer,et al.  WannierTools: An open-source software package for novel topological materials , 2017, Comput. Phys. Commun..

[38]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[39]  K. Kokh,et al.  Dual nature of magnetic dopants and competing trends in topological insulators , 2016, Nature Communications.

[40]  G. Gu,et al.  Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3 , 2014, Proceedings of the National Academy of Sciences.

[41]  Arash A. Mostofi,et al.  An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions , 2014, Comput. Phys. Commun..

[42]  Cheol-hee Park,et al.  Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4 , 2013 .

[43]  Q. Xue,et al.  Fermi-level tuning of epitaxial Sb2Te3 thin films on graphene by regulating intrinsic defects and substrate transfer doping. , 2011, Physical review letters.

[44]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[45]  A. Balatsky,et al.  Impurity-induced states on the surface of three-dimensional topological insulators , 2009, 0910.4604.

[46]  L. Fu Hexagonal warping effects in the surface states of the topological insulator Bi2Te3. , 2009, Physical review letters.

[47]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[48]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[49]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[50]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.