Group Processing of Multiple k-Farthest Neighbor Queries in Road Networks

Advances in mobile technologies and map-based applications enables users to utilize sophisticated spatial queries, including <inline-formula> <tex-math notation="LaTeX">${k}$ </tex-math></inline-formula>-nearest neighbor and shortest path queries. Often, location-based servers are used to handle multiple simultaneous queries because of the popularity of map-based applications. This study focuses on the efficient processing of multiple concurrent <inline-formula> <tex-math notation="LaTeX">${k}$ </tex-math></inline-formula>-farthest neighbor (<inline-formula> <tex-math notation="LaTeX">${k}$ </tex-math></inline-formula>FN) queries in road networks. For a positive integer <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>, query point <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>, and set of data points <inline-formula> <tex-math notation="LaTeX">$P$ </tex-math></inline-formula>, a <inline-formula> <tex-math notation="LaTeX">${k}$ </tex-math></inline-formula>FN query returns <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> data points farthest from the query point <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula>. For addressing multiple concurrent spatial queries, traditional location-based servers based on one-query-at-a-time processing are unsuitable owing to high redundant computation costs. Therefore, we propose a group processing of multiple <inline-formula> <tex-math notation="LaTeX">${k}$ </tex-math></inline-formula>FN (GMP) algorithm to process multiple <inline-formula> <tex-math notation="LaTeX">${k}$ </tex-math></inline-formula>FN queries in road networks. The proposed GMP algorithm uses group computation to avoid the redundant computation of network distances between the query and data points. The experiments using real-world roadmaps demonstrate the proposed solution’s effectiveness and efficiency.

[1]  Chi-Yin Chow,et al.  SMashQ: spatial mashup framework for k-NN queries in time-dependent road networks , 2012, Distributed and Parallel Databases.

[2]  David Taniar,et al.  Reverse k Nearest Neighbor and Reverse Farthest Neighbor Search on Spatial Networks , 2009, Trans. Large Scale Data Knowl. Centered Syst..

[3]  Cyrus Shahabi,et al.  A Road Network Embedding Technique for K-Nearest Neighbor Search in Moving Object Databases , 2002, GIS '02.

[4]  Christian S. Jensen,et al.  Concise caching of driving instructions , 2014, SIGSPATIAL/GIS.

[5]  Timos K. Sellis,et al.  Multiple-query optimization , 1988, TODS.

[6]  Gustavo Alonso,et al.  SharedDB: Killing One Thousand Queries With One Stone , 2012, Proc. VLDB Endow..

[7]  Minyi Guo,et al.  Reverse Furthest Neighbors Query in Road Networks , 2017, Journal of Computer Science and Technology.

[8]  Stefan Funke,et al.  Ultrafast Shortest-Path Queries via Transit Nodes , 2006, The Shortest Path Problem.

[9]  Yuan Yuan,et al.  New Ideas for FN/RFN Queries Based Nearest Voronoi Diagram , 2013, BIC-TA.

[10]  Abhishek Chandra,et al.  Multi-Query Optimization in Wide-Area Streaming Analytics , 2018, SoCC.

[11]  Gustavo Alonso,et al.  Many-query join: efficient shared execution of relational joins on modern hardware , 2017, The VLDB Journal.

[12]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[13]  Ryan R. Curtin,et al.  Exploiting the structure of furthest neighbor search for fast approximate results , 2019, Inf. Syst..

[14]  Sure Computing Geodesic Furthest Neighbors in Simple Polygons * , 2003 .

[15]  Jeyhun Karimov,et al.  AStream: Ad-hoc Shared Stream Processing , 2019, SIGMOD Conference.

[16]  Carsten Binnig,et al.  OLTPShare: The Case for Sharing in OLTP Workloads , 2018, Proc. VLDB Endow..

[17]  Gustavo Alonso,et al.  Shared Workload Optimization , 2014, Proc. VLDB Endow..

[18]  David Taniar,et al.  k-Nearest Neighbors on Road Networks: A Journey in Experimentation and In-Memory Implementation , 2016, Proc. VLDB Endow..

[19]  Hua Lu,et al.  On Computing Farthest Dominated Locations , 2011, IEEE Transactions on Knowledge and Data Engineering.

[20]  Kian-Lee Tan,et al.  G-Tree: An Efficient and Scalable Index for Spatial Search on Road Networks , 2015, IEEE Transactions on Knowledge and Data Engineering.

[21]  Feifei Li,et al.  Reverse Furthest Neighbors in Spatial Databases , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[22]  Hanan Samet,et al.  Memory-efficient algorithms for spatial network queries , 2013, 2013 IEEE 29th International Conference on Data Engineering (ICDE).

[23]  Jeyhun Karimov,et al.  AJoin: Ad-hoc Stream Joins at Scale , 2019, Proc. VLDB Endow..

[24]  Christian S. Jensen,et al.  Effective caching of shortest paths for location-based services , 2012, SIGMOD Conference.

[25]  Hanan Samet,et al.  Scalable network distance browsing in spatial databases , 2008, SIGMOD Conference.

[26]  Hyung-Ju Cho Shared Execution Approach to ε-Distance Join Queries in Dynamic Road Networks , 2018, ISPRS Int. J. Geo Inf..

[27]  Mehrad Eslami,et al.  PsiDB: A Framework for Batched Query Processing and Optimization , 2019, 2019 IEEE International Conference on Big Data (Big Data).

[28]  Pietro Michiardi,et al.  In-memory Caching for Multi-query Optimization of Data-intensive Scalable Computing Workloads , 2019, EDBT/ICDT Workshops.

[29]  Muhammad Aamir Cheema,et al.  The Optimal Route and Stops for a Group of Users in a Road Network , 2017, SIGSPATIAL/GIS.

[30]  Hua Lu,et al.  S-GRID: A Versatile Approach to Efficient Query Processing in Spatial Networks , 2007, SSTD.

[31]  Gustavo Alonso,et al.  MQJoin: Efficient Shared Execution of Main-Memory Joins , 2016, Proc. VLDB Endow..

[32]  Torben Bach Pedersen,et al.  Nearest neighbor queries in road networks , 2003, GIS '03.

[33]  Yuan Tian,et al.  ROAD: A New Spatial Object Search Framework for Road Networks , 2012, IEEE Transactions on Knowledge and Data Engineering.

[34]  Yannis Manolopoulos,et al.  Multi-Way Distance Join Queries in Spatial Databases , 2004, GeoInformatica.

[35]  Shuigeng Zhou,et al.  Shortest Path and Distance Queries on Road Networks: An Experimental Evaluation , 2012, Proc. VLDB Endow..

[36]  Lei Li,et al.  Efficient Batch Processing of Shortest Path Queries in Road Networks , 2019, 2019 20th IEEE International Conference on Mobile Data Management (MDM).

[37]  Lars Kulik,et al.  A motion-aware approach for efficient evaluation of continuous queries on 3D object databases , 2010, The VLDB Journal.

[38]  Yufei Tao,et al.  Query Processing in Spatial Network Databases , 2003, VLDB.

[39]  Anastasia Ailamaki,et al.  Sharing Data and Work Across Concurrent Analytical Queries , 2013, Proc. VLDB Endow..

[40]  Peter Sanders,et al.  Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks , 2008, WEA.

[41]  Gustavo Alonso,et al.  Pay One, Get Hundreds for Free: Reducing Cloud Costs through Shared Query Execution , 2018, SoCC.

[42]  Hanan Samet,et al.  Distance join queries on spatial networks , 2006, GIS '06.

[43]  Tanzima Hashem,et al.  A Group Based Approach for Path Queries in Road Networks , 2013, SSTD.

[44]  Tanzima Hashem,et al.  Group Processing of Simultaneous Shortest Path Queries in Road Networks , 2015, 2015 16th IEEE International Conference on Mobile Data Management.

[45]  Jianquan Liu,et al.  An Efficient Algorithm for Arbitrary Reverse Furthest Neighbor Queries , 2012, APWeb.

[46]  Shazia Wasim Sadiq,et al.  Efficient Aggregate Farthest Neighbour Query Processing on Road Networks , 2014, ADC.

[47]  Dongxi Liu,et al.  Efficiently computing reverse k furthest neighbors , 2016, 2016 IEEE 32nd International Conference on Data Engineering (ICDE).

[48]  Lei Li,et al.  Batch Processing of Shortest Path Queries in Road Networks , 2019, ADC.

[49]  Zhenmin Chen,et al.  Characterizations Of Nearest And Farthest Neighbor Algorithms By Clustering Admissibility Conditions , 1998, Pattern Recognit..

[50]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[51]  Pawel Boinski,et al.  Concurrent Execution of Data Mining Queries for Spatial Collocation Pattern Discovery , 2013, DaWaK.

[52]  Gang Chen,et al.  Aggregate Farthest-Neighbor Queries over Spatial Data , 2011, DASFAA.

[53]  Zijian Li,et al.  G*-Tree: An Efficient Spatial Index on Road Networks , 2019, 2019 IEEE 35th International Conference on Data Engineering (ICDE).

[54]  Hyung-Ju Cho,et al.  Efficient Shared Execution Processing of k-Nearest Neighbor Joins in Road Networks , 2018, Mob. Inf. Syst..