Adiabatic calorimetry test of the reaction kinetics and self-heating model for 18650 Li-ion cells in various states of charge

[1]  R. Srinivasan,et al.  Graphitic carbon anode temperature excursions reflect crystallographic phase transitions in lithium-ion cells , 2015 .

[2]  C. Shu,et al.  Effects of thermal hazard on 18650 lithium-ion battery under different states of charge , 2015, Journal of Thermal Analysis and Calorimetry.

[3]  C. Shu,et al.  Thermal hazards of a green antimicrobial peracetic acid combining DSC calorimeter with thermal analysis equations , 2015, Journal of Thermal Analysis and Calorimetry.

[4]  Tao Wang,et al.  Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies , 2014 .

[5]  Jinhua Sun,et al.  Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method , 2014 .

[6]  Jean-Michel Vinassa,et al.  Thermal characterization of a high-power lithium-ion battery: Potentiometric and calorimetric measurement of entropy changes , 2013 .

[7]  C. Shu,et al.  Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter , 2013, Journal of Thermal Analysis and Calorimetry.

[8]  Chi-Min Shu,et al.  Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology , 2012 .

[9]  Qingsong Wang,et al.  Thermal runaway caused fire and explosion of lithium ion battery , 2012 .

[10]  Niket S. Kaisare,et al.  A review on microcombustion: Fundamentals, devices and applications , 2012 .

[11]  Hiroaki Ishikawa,et al.  Study of thermal deterioration of lithium-ion secondary cell using an accelerated rate calorimeter (ARC) and AC impedance method , 2012 .

[12]  Chi-Min Shu,et al.  Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter. , 2011, Journal of hazardous materials.

[13]  Can-Yong Jhu,et al.  Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries , 2011 .

[14]  Yuan Hu,et al.  Thermal degradation and intumescent flame retardation of cellulose whisker/epoxy resin composite , 2011 .

[15]  Daniel A. Crowl,et al.  Fundamentals of Fires and Explosions , 2010 .

[16]  S. Lee,et al.  Thermal studies of charged cathode material (LixCoO2) with temperature-programmed decomposition–mass spectrometry , 2010 .

[17]  D. Mohanty,et al.  Thermal decomposition of LixCoO2 monitored by electron energy loss spectroscopy and magnetic susceptibility measurements , 2010 .

[18]  C. Moo,et al.  Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries , 2009 .

[19]  H. Maleki,et al.  Internal short circuit in Li-ion cells , 2009 .

[20]  Qingsong Wang,et al.  Effects of solvents and salt on the thermal stability of charged LiCoO2 , 2009 .

[21]  Qingsong Wang,et al.  Micro calorimeter study on the thermal stability of lithium-ion battery electrolytes , 2006 .

[22]  D. D. MacNeil,et al.  The Reactions of Li0.5CoO2 with Nonaqueous Solvents at Elevated Temperatures , 2002 .

[23]  Y. Baba,et al.  Thermal stability of LixCoO2 cathode for lithium ion battery , 2002 .

[24]  J. Dahn,et al.  Predicting electrical and thermal abuse behaviours of practical lithium-ion cells from accelerating rate calorimeter studies on small samples in electrolyte , 1999 .

[25]  Heping Zhang,et al.  An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter , 2015 .

[26]  C. Shu,et al.  Hazard Characterizations of Li-Ion Batteries: Thermal Runaway Evaluation by Calorimetry Methodology , 2015 .

[27]  Joong-Kee Lee,et al.  Effects of ZnO coating on electrochemical performance and thermal stability of LiCoO2 as cathode material for lithium-ion batteries , 2010 .

[28]  Masaki Yoshio,et al.  A Review of Positive Electrode Materials for Lithium-Ion Batteries , 2009 .

[29]  M. Yoshio,et al.  Lithium-ion batteries , 2009 .

[30]  Junwei Jiang,et al.  ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes , 2004 .

[31]  R. Spotnitz,et al.  Abuse behavior of high-power, lithium-ion cells , 2003 .