Modelling the evolution of galaxy clustering

Measurements of galaxy clustering are now becoming possible over a range of redshifts out to z∼ 3. We use a semi-analytic model of galaxy formation to compute the expected evolution of the galaxy correlation function with redshift. We illustrate how the degree of clustering evolution is sensitive to the details of sample selection. For a fixed apparent magnitude limit, galaxies selected at higher redshifts are located in progressively rarer dark matter haloes, compared with the general population of galaxies in place at each redshift. As a result these galaxies are highly biased tracers of the underlying dark matter distribution and exhibit stronger clustering than the dark matter. In general, the correlation length measured in comoving units, decreases at first with increasing redshift, before increasing again at higher redshift. We show that the e-model often used to interpret the angular correlation function of faint galaxies gives an inadequate description of the evolution of clustering, and offers no physical insight into the clustering process. We compare our predictions with those of a simple, popular model in which a one-to-one correspondence between galaxies and dark haloes is assumed. Qualitatively, this model reproduces the correct evolutionary behaviour at high redshift, but the quantitative results can be significantly in error. Our theoretical expectations are in good agreement with the high redshift clustering data of Carlberg et al. and Postman et al. but are higher than the measurements of Le Fevre et al.

[1]  S. White,et al.  The structure and clustering of Lyman-break galaxies , 1998, astro-ph/9807341.

[2]  G. Kauffmann,et al.  Clustering of galaxies in a hierarchical universe - I. Methods and results at z=0 , 1998, astro-ph/9805283.

[3]  H. Lin,et al.  The CNOC2 field galaxy redshift survey , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  H. D. Di Rocco,et al.  Dielectronic Recombination of Mg II in Stellar Envelopes , 1998 .

[5]  Y. Jing,et al.  Accurate Fitting Formula for the Two-Point Correlation Function of Dark Matter Halos , 1998, astro-ph/9805202.

[6]  M. Giavalisco,et al.  A Counts-in-Cells Analysis Of Lyman-break Galaxies At Redshift z ~ 3 , 1998, astro-ph/9804236.

[7]  T. Lauer,et al.  Clustering at High Redshift: Precise Constraints from a Deep, Wide-Area Survey , 1998, astro-ph/9804141.

[8]  A. Szalay,et al.  Evolution of the Angular Correlation Function , 1998, astro-ph/9803047.

[9]  C. Baugh,et al.  The seeds of rich galaxy clusters in the Universe , 1998, Nature.

[10]  M. Dickinson,et al.  The Angular Clustering of Lyman-Break Galaxies at Redshift z ~ 3 , 1998, astro-ph/9802318.

[11]  I. Smail,et al.  A Constant Clustering Amplitude for Faint Galaxies? , 1997, astro-ph/9712276.

[12]  L. Moscardini,et al.  Modelling galaxy clustering at high redshift , 1997, astro-ph/9712184.

[13]  J. Bagla Evolution of galaxy clustering , 1997, astro-ph/9711081.

[14]  H. M. P. Couchman,et al.  Evolution of Structure in Cold Dark Matter Universes , 1997, astro-ph/9709010.

[15]  L. Moscardini,et al.  Redshift evolution of clustering , 1996, astro-ph/9608004.

[16]  G. Kauffmann,et al.  Galaxy formation and large scale bias , 1995, astro-ph/9512009.

[17]  N. Bahcall Large-scale structure in the universe. , 1996, astro-ph/9612046.

[18]  C. Baugh,et al.  FAINT GALAXY COUNTS AS A FUNCTION OF MORPHOLOGICAL TYPE IN A HIERARCHICAL MERGER MODEL , 1996, astro-ph/9607056.

[19]  U. Toronto,et al.  The Clustering of Faint Galaxies and the Evolution of XI (r) , 1996, astro-ph/9605056.

[20]  J. Peacock,et al.  Non-linear evolution of cosmological power spectra , 1996, astro-ph/9603031.

[21]  C. Baugh,et al.  Evolution of the Hubble sequence in hierarchical models for galaxy formation , 1996, astro-ph/9602085.

[22]  M. Giavalisco,et al.  Spectroscopic Confirmation of a Population of Normal Star-forming Galaxies at Redshifts z > 3 , 1996, astro-ph/9602024.

[23]  S. Cole,et al.  Using the evolution of clusters to constrain Omega , 1996, astro-ph/9601088.

[24]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[25]  C. Baugh THE REAL-SPACE CORRELATION FUNCTION MEASURED FROM THE APM GALAXY SURVEY , 1995, astro-ph/9512011.

[26]  O. Fèvre,et al.  The Canada France Redshift Survey VIII: Evolution of the clustering of galaxies from z~1 , 1995, astro-ph/9510090.

[27]  L. Infante,et al.  The Clustering Properties of Faint Galaxies , 1994, astro-ph/9408071.

[28]  S. Cole,et al.  Galaxy formation in a variety of hierarchical models , 1994, astro-ph/9408065.

[29]  C. Frenk,et al.  A recipe for galaxy formation , 1994, astro-ph/9402001.

[30]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[31]  Tom Shanks,et al.  The angular correlation function of galaxies with B ~ 25 mag , 1993 .

[32]  S. White,et al.  The Correlation function of clusters of galaxies and the amplitude of mass fluctuations in the Universe , 1993, astro-ph/9602052.

[33]  S. Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994, astro-ph/9402069.

[34]  J. Silk,et al.  Tidally triggered galaxy formation. II: Galaxy number counts , 1993 .

[35]  Puragra Guhathakurta,et al.  The clustering of faint galaxies , 1991 .

[36]  H. Martel,et al.  Fragmentation of elongated cylindrical clouds. II : Polytropic clouds , 1991 .

[37]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[38]  A. Hamilton,et al.  Reconstructing the primordial spectrum of fluctuations of the universe from the observed nonlinear clustering of galaxies , 1991 .

[39]  C. Baugh,et al.  The Epoch of Galaxy Formation , 1997, astro-ph/9703111.

[40]  S. Cole,et al.  Biased clustering in the cold dark matter cosmogony , 1989 .

[41]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[42]  Phillip James Edwin Peebles,et al.  Statistical analysis of catalogs of extragalactic objects. VII. Two- and three-point correlation functions for the high-resolution Shane-Wirtanen catalog of galaxies , 1977 .

[43]  D. Nelson Limber,et al.  The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field. II , 1953 .