In vivo architectonics: A cortico-centric perspective

Recent advances in noninvasive structural imaging have opened up new approaches to cortical parcellation, many of which are described in this special issue on In Vivo Brodmann Mapping. In this introductory article, we focus on the emergence of cortical myelin maps as a valuable way to assess cortical organization in humans and nonhuman primates. We demonstrate how myelin maps are useful in three general domains: (i) as a way to identify cortical areas and functionally specialized regions in individuals and group averages; (ii) as a substrate for improved intersubject registration; and (iii) as a basis for interspecies comparisons. We also discuss how myelin-based cortical parcellation is complementary in important ways to connectivity-based parcellation using functional MRI or diffusion imaging and tractography. These observations and perspectives provide a useful background and context for other articles in this special issue.

[1]  P. Morosan,et al.  Quantitative Architectural Analysis: A New Approach to Cortical Mapping , 2009, Journal of autism and developmental disorders.

[2]  Mark W. Woolrich,et al.  Resting-state fMRI in the Human Connectome Project , 2013, NeuroImage.

[3]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[5]  Atsushi Nambu,et al.  Somatotopic arrangement and corticocortical inputs of the hindlimb region of the primary motor cortex in the macaque monkey , 2001, Neuroscience Research.

[6]  John G. Csernansky,et al.  Comparing surface-based and volume-based analyses of functional neuroimaging data in patients with schizophrenia , 2008, NeuroImage.

[7]  M. Inase,et al.  Reevaluation of ipsilateral corticocortical inputs to the orofacial region of the primary motor cortex in the macaque monkey , 1997, The Journal of comparative neurology.

[8]  D. V. Essen,et al.  Surface-Based and Probabilistic Atlases of Primate Cerebral Cortex , 2007, Neuron.

[9]  Joaquin M. Fuster,et al.  Gradients of Cortical Plasticity , 1995 .

[10]  P. Morosan,et al.  Observer-Independent Method for Microstructural Parcellation of Cerebral Cortex: A Quantitative Approach to Cytoarchitectonics , 1999, NeuroImage.

[11]  Nicholas A. Bock,et al.  Visualizing the entire cortical myelination pattern in marmosets with magnetic resonance imaging , 2009, Journal of Neuroscience Methods.

[12]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[13]  Stephen M. Smith,et al.  Spatially constrained hierarchical parcellation of the brain with resting-state fMRI , 2013, NeuroImage.

[14]  M. Rushworth,et al.  Behavioral / Systems / Cognitive Connectivity-Based Parcellation of Human Cingulate Cortex and Its Relation to Functional Specialization , 2008 .

[15]  Timothy Edward John Behrens,et al.  Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[17]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[18]  Bertrand Thirion,et al.  An empirical comparison of surface-based and volume-based group studies in neuroimaging , 2012, NeuroImage.

[19]  Damien A. Fair,et al.  Defining functional areas in individual human brains using resting functional connectivity MRI , 2008, NeuroImage.

[20]  Desmond J. Higham,et al.  Connectivity-based parcellation of human cortex using diffusion MRI: Establishing reproducibility, validity and observer independence in BA 44/45 and SMA/pre-SMA , 2007, NeuroImage.

[21]  John W. Harwell,et al.  Cortical parcellations of the macaque monkey analyzed on surface-based atlases. , 2012, Cerebral cortex.

[22]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[23]  D. C. Van Essen,et al.  Cerebral Cortical Folding Patterns in Primates: Why They Vary and What They Signify , 2007 .

[24]  Rainer Goebel,et al.  Measuring structural–functional correspondence: Spatial variability of specialised brain regions after macro-anatomical alignment , 2012, NeuroImage.

[25]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[26]  Abraham Z. Snyder,et al.  A default mode of brain function: A brief history of an evolving idea , 2007, NeuroImage.

[27]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[28]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[29]  Nikola T. Markov,et al.  Weight Consistency Specifies Regularities of Macaque Cortical Networks , 2010, Cerebral cortex.

[30]  H. Kennedy,et al.  Anatomical Evidence of Multimodal Integration in Primate Striate Cortex , 2002, The Journal of Neuroscience.

[31]  Timothy O. Laumann,et al.  Parcellating an Individual Subject's Cortical and Subcortical Brain Structures Using Snowball Sampling of Resting-State Correlations , 2013, Cerebral cortex.

[32]  Timothy S. Coalson,et al.  Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. , 2012, Cerebral cortex.

[33]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[34]  Stephen M. Smith,et al.  Multimodal Surface Matching: Fast and Generalisable Cortical Registration Using Discrete Optimisation , 2013, IPMI.

[35]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[36]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[37]  M. Tittgemeyer,et al.  The Role of Long-Range Connectivity for the Characterization of the Functional–Anatomical Organization of the Cortex , 2011, Front. Syst.Neurosci..

[38]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[39]  A. Huggett,et al.  Progress in Physiology , 1963 .

[40]  Rudolf Nieuwenhuys,et al.  The insular cortex: a review. , 2012, Progress in brain research.

[41]  Nikola T. Markov,et al.  A Weighted and Directed Interareal Connectivity Matrix for Macaque Cerebral Cortex , 2012, Cerebral cortex.

[42]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[43]  David C. Van Essen,et al.  The future of the human connectome , 2012, NeuroImage.

[44]  J. Price,et al.  Architectonic subdivision of the human orbital and medial prefrontal cortex , 2003, The Journal of comparative neurology.

[45]  Matthew F. Glasser,et al.  Trends and Properties of Human Cerebral Cortex: Correlations with Cortical Myelin Content Introduction and Review , 2022 .

[46]  Guy A. Orban,et al.  Visual Activation in Prefrontal Cortex is Stronger in Monkeys than in Humans , 2004, Journal of Cognitive Neuroscience.

[47]  F. Dick,et al.  Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy† , 2012, Cerebral cortex.

[48]  Timothy O. Laumann,et al.  Functional Network Organization of the Human Brain , 2011, Neuron.

[49]  Jonathan Winawer,et al.  Imaging retinotopic maps in the human brain , 2011, Vision Research.

[50]  Jonathan D. Power,et al.  A Parcellation Scheme for Human Left Lateral Parietal Cortex , 2010, Neuron.

[51]  Bryan R. Conroy,et al.  Function-based Intersubject Alignment of Human Cortical Anatomy , 2009, Cerebral cortex.