Concentration profiles of 2.5 microns latex beads were measured to demonstrate lateral transport of platelet-sized objects in flows of blood suspensions; the flows had equivalent Poiseuille wall shear rates (WSRs) from 250 to 1220 s-1. Each experimental trial began with a steady flow of suspension without beads in a thin-walled capillary tube (219 microns ID; 10.2 microns SD). The tube entrance was then switched to a reservoir containing suspension of equal hematocrit, but with beads, for a short interval of flow at the same WSR. This process established a paraboloidal tongue of labeled suspension with a transient concentration gradient at its surface. The tube and contents were rapidly frozen to fix the suspended particles in flow-determined locations. Segments of frozen tube were collected at distances from the entrance corresponding to 13%, 39%, and 65% of the axial extent of the ideal paraboloidal tongue. Concentration profiles were estimated from distances measured on fluorescence microscope images of cross-cut tube segments. Experiments used tubes either 40 or 50 cm long, suspension hematocrits of 0, 15, or 40%, and bead concentrations in the range of 1.5-2.2 x 10(5)/mm3. Profiles for 0% hematocrit suspension, a dilute, single-component suspension, had features expected in normal diffusive mixing in a flow. Distinctly different profiles and more lateral transport occurred when the suspensions contained red cells; then, all profiles for 13% extent had regions of excess bead concentration near the wall. Suspension flows with 40% hematocrit exhibited the largest amount of lateral transport. A case is made that, to a first approximation, the rate of lateral transport grew linearly with WSR; however, statistical analysis showed that for 40% hematocrit, less lateral transport occurred when the WSR was 250 s-1 or 1220 s-1 than 560 s-1, thus indicating that the rate behavior is more complex.
[1]
Regional platelet concentration in blood flow through capillary tubes.
,
1986,
Microvascular research.
[2]
P. Blackshear,et al.
FLUID DYNAMIC FACTORS AFFECTING PARTICLE CAPTURE AND RETENTION *
,
1977
.
[3]
A. M. Benis,et al.
Platelet Diffusion in Flowing Blood
,
1972
.
[4]
R. Wells,et al.
Fluid Drop-Like Transition of Erythrocytes under Shear
,
1969,
Science.
[5]
C. Waters,et al.
Concentration profiles of platelet-sized latex beads for conditions relevant to hollow-fiber hemodialyzers.
,
2008,
Artificial organs.