Mapping the elemental composition of Ceres and Vesta: Dawn’s gamma ray and neutron detector

Dawn is a NASA discovery mission that will explore the main belt asteroids (1) Ceres and (4) Vesta. Ceres and Vesta are among the oldest bodies in the solar system and represent very different evolutionary paths. By studying these ancient, complementary asteroids, we will answer fundamental questions about the early solar system and planetary formation processes. The Dawn payload consists of a Framing Camera (FC), a visual and infrared mapping spectrometer (VIR), and a Gamma Ray and Neutron Detector (GRaND). The instruments provide data needed to investigate the structure, geology, mineralogy, and geochemistry of the asteroids. GRaND provides the data for the geochemistry investigation, including maps of most major elements and selected radioactive and trace elements. An updated description of the GRaND instrument is given along with the expected performance of GRaND at Vesta and Ceres. Approaches to combine data from FC, VIR and GRaND are discussed.

[1]  Robert C. Reedy,et al.  Expected γ ray emission spectra from the lunar surface as a function of chemical composition , 1973 .

[2]  William V. Boynton,et al.  Global distribution of near-surface hydrogen on Mars , 2004 .

[3]  John F. Mustard,et al.  Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra , 1989 .

[4]  Angioletta Coradini,et al.  VIRTIS: The imaging spectrometer of the Rosetta mission , 1999 .

[5]  David J. Lawrence,et al.  Gamma-ray measurements from Lunar Prospector: Time series data reduction for the Gamma-Ray Spectrometer , 2004 .

[6]  Thomas H. Prettyman,et al.  Gamma-Ray, Neutron, and Alpha-Particle Spectrometers for the Lunar Prospector mission , 2004 .

[7]  Angioletta Coradini,et al.  Dawn: A journey in space and time , 2003 .

[8]  Roger C. Wiens,et al.  Seasonal cycle of carbon dioxide and atmospheric circulation in Mars' southern hemisphere as observed by neutron spectroscopy , 2004 .

[9]  Paul G. Lucey,et al.  Lunar rare earth element distribution and ramifications for FeO and TiO2: Lunar Prospector neutron spectrometer observations , 2000 .

[10]  U. Fink,et al.  Virtis : an imaging spectrometer for the rosetta mission , 1998 .

[11]  R. Wiens,et al.  Evidence for water ice near the lunar poles , 2001 .

[12]  Christopher T. Russell,et al.  Gamma-ray and neutron spectrometer for the Dawn mission to 1 Ceres and 4 Vesta , 2003 .

[13]  S. Storms,et al.  CdZnTe gamma ray spectrometer for orbital planetary missions , 2001, 2001 IEEE Nuclear Science Symposium Conference Record (Cat. No.01CH37310).

[14]  Paul G. Lucey,et al.  High‐energy neutrons from the Moon , 2000 .

[15]  Alan B. Binder,et al.  Chemical information content of lunar thermal and epithermal neutrons , 2000 .

[16]  Thomas H. Prettyman,et al.  Composition from fast neutrons: Application to the Moon , 2001 .

[17]  Jeffrey S. Kargel,et al.  Hydrated states of MgSO4 at equatorial latitudes on Mars , 2004 .

[18]  Richard D. Starr,et al.  Composition and structure of the Martian surface at high southern latitudes from neutron spectroscopy , 2004 .

[19]  Thomas H. Prettyman,et al.  Exploring Martian polar atmospheric circulation and surface interactions , 2004 .

[20]  Paul G. Lucey,et al.  Iron abundances on the lunar surface as measured by the Lunar Prospector gamma‐ray and neutron spectrometers , 2002 .

[21]  Antonio Lanzirotti,et al.  Ancient water on asteroid 4 Vesta: evidence from a quartz veinlet in the Serra de Magé eucrite meteorite , 2004 .