Femtosecond laser direct writing of gratings and waveguides in high quantum efficiency erbium-doped Baccarat glass

The femtosecond laser direct writing technique was employed to inscribe gratings and waveguides in high quantum efficiency erbium-doped Baccarat glass. Using the butt coupling technique, a systematic study of waveguide loss with respect to input pulse energy and writing speed was performed to achieve the best waveguide with low propagation loss (PL). By pumping at 980 nm, we observed signal enhancement in these active waveguides in the telecom spectral region. The refractive index change was smooth and we estimated it to be ~10−3. The high quantum efficiency (~80%) and a best PL of ~0.9 dB cm−1 combined with signal enhancement makes Baccarat glass a potential candidate for application in photonics.

[1]  Peter G. Kazansky,et al.  Non-reciprocal ultrafast laser writing , 2008 .

[2]  R Osellame,et al.  C-band waveguide amplifier produced by femtosecond laser writing. , 2005, Optics express.

[3]  Fumiyo Yoshino,et al.  Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. , 2005, Optics express.

[4]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[5]  Thomas R Huser,et al.  Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses , 2003 .

[6]  Bianca Schreder,et al.  Femtosecond laser-induced refractive index modification in multicomponent glasses , 2005 .

[7]  T. Yoko,et al.  Waveguide formation in niobium tellurite glasses by pico- and femtosecond laser pulses , 2003 .

[8]  Koji Sugioka,et al.  Optical gratings embedded in photosensitive glass by photochemical reaction using a femtosecond laser. , 2003, Optics express.

[9]  Andrew A. Bettiol,et al.  Fabrication of buried channel waveguides in photosensitive glass using proton beam writing , 2006 .

[10]  P. Corkum,et al.  Optically produced arrays of planar nanostructures inside fused silica. , 2006, Physical review letters.

[11]  Joseph S. Hayden,et al.  Waveguide fabrication in phosphate glasses using femtosecond laser pulses , 2003 .

[12]  A. Chiappini,et al.  Micro-Raman mapping of micro-gratings in Baccarat glass directly written using femtosecond laser , 2008, SPIE LASE.

[13]  W. Miniscalco Erbium-doped glasses for fiber amplifiers at 1500 nm , 1991 .

[14]  Martin Ams,et al.  Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. , 2005, Optics express.

[15]  Animesh Jha,et al.  Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription , 2007 .

[16]  Alan Arai,et al.  Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate. , 2005, Optics express.

[17]  Weijia Yang,et al.  Self-assembled periodic sub-wavelength structures by femtosecond laser direct writing. , 2006, Optics express.

[18]  R. Graf,et al.  Pearl-chain waveguides written at megahertz repetition rate , 2007 .

[19]  K. Itoh,et al.  Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm. , 2006, Optics express.

[20]  Costantino Corbari,et al.  Low loss photonic components in high index bismuth borate glass by femtosecond laser direct writing. , 2008, Optics express.

[21]  Koji Sugioka,et al.  Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser. , 2003, Optics letters.

[22]  Koji Sugioka,et al.  Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. , 2003, Optics letters.

[23]  S. Risbud,et al.  Structural changes in fused silica after exposure to focused femtosecond laser pulses. , 2001, Optics letters.

[24]  M. Calligaro,et al.  Measurements of optical loss in GaAs/Al2O3 nonlinear waveguides in the infrared using femtosecond scattering technique , 2002 .

[25]  Koji Sugioka,et al.  Three-dimensional micro-optical components embedded in Foturan glass by a femtosecond laser , 2003, International Symposium on Laser Precision Microfabrication.

[26]  A. Chiappini,et al.  Erbium-activated modified silica glasses with high 4I13/2 luminescence quantum yield , 2006 .

[27]  Y. Shimotsuma,et al.  Self-organized nanogratings in glass irradiated by ultrashort light pulses. , 2003, Physical review letters.

[28]  S. Debbarma,et al.  Femtosecond laser written channel waveguides in tellurite glass. , 2006, Optics express.

[29]  Stefano Taccheo,et al.  Femtosecond writing of active optical waveguides with astigmatically shaped beams , 2003 .

[30]  Peter R. Herman,et al.  A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems , 2006 .

[31]  R Osellame,et al.  Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass. , 2008, Optics express.

[32]  J. Chan,et al.  Confocal fluorescence and Raman microscopy of femtosecond laser-modified fused silica , 2003 .

[33]  Eric Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[34]  Uwe Morgner,et al.  Er:Yb-doped waveguide laser fabricated by femtosecond laser pulses. , 2004, Optics letters.

[35]  Koji Sugioka,et al.  Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. , 2004, Optics letters.

[36]  Y. Romanyuk,et al.  Optical waveguides in laser crystals , 2007 .

[37]  S. Nolte,et al.  Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics , 2003 .

[38]  Peter Dekker,et al.  Directly written monolithic waveguide laser incorporating a distributed feedback waveguide-Bragg grating. , 2008, Optics letters.

[39]  Anthony J. Kenyon,et al.  Recent developments in rare-earth doped materials for optoelectronics , 2002 .