Asymptotic behavior of the empirical multilinear copula process under broad conditions
暂无分享,去创建一个
[1] R. Nelsen. An Introduction to Copulas , 1998 .
[2] P. Gaenssler,et al. Seminar on Empirical Processes , 1987 .
[3] Stanislav Volgushev,et al. Empirical and sequential empirical copula processes under serial dependence , 2011, J. Multivar. Anal..
[4] M. Wegkamp,et al. Weak Convergence of Empirical Copula Processes , 2004 .
[5] C. Genest,et al. Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask , 2007 .
[6] B. Rémillard,et al. Test of independence and randomness based on the empirical copula process , 2004 .
[7] Olivier P. Faugeras,et al. Maximal coupling of empirical copulas for discrete vectors , 2015, J. Multivar. Anal..
[8] A. Rényi,et al. On mixing sequences of random variables , 1958 .
[9] L. Rüschendorf. On the distributional transform, Sklar's theorem, and the empirical copula process , 2009 .
[10] Christian Genest,et al. On the empirical multilinear copula process for count data , 2014, 1407.1200.
[11] David S. Moore,et al. Unified Large-Sample Theory of General Chi-Squared Statistics for Tests of Fit , 1975 .
[12] Richard A. Davis,et al. Time Series: Theory and Methods , 2013 .
[13] B. Rémillard,et al. Goodness-of-fit tests for copulas: A review and a power study , 2006 .
[14] Gerald S. Rogers,et al. Mathematical Statistics: A Decision Theoretic Approach , 1967 .
[15] Christian Genest,et al. Copulas and Copula Models , 2014 .
[16] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[17] Peter J. Bickel,et al. Convergence Criteria for Multiparameter Stochastic Processes and Some Applications , 1971 .
[18] Winfried Stute,et al. The Oscillation Behavior of Empirical Processes: The Multivariate Case , 1984 .
[19] Peng Shi,et al. Longitudinal Modeling of Insurance Claim Counts Using Jitters , 2011 .
[20] Jun Yan,et al. A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems , 2011, Stat. Comput..
[21] David M. Zimmer,et al. Modelling the Differences in Counted Outcomes Using Bivariate Copula Models with Application to Mismeasured Counts , 2004 .
[22] Christian Genest,et al. Discussion: Statistical models and methods for dependence in insurance data , 2011 .
[23] H. Tsukahara,et al. Semiparametric estimation in copula models , 2005 .
[24] Holger Dette,et al. A note on bootstrap approximations for the empirical copula process , 2010 .
[25] Paul Deheuvels,et al. A multivariate Bahadur–Kiefer representation for the empirical copula process , 2009 .
[26] Michel Denuit,et al. Constraints on concordance measures in bivariate discrete data , 2005 .
[27] B. Schweizer,et al. Operations on distribution functions not derivable from operations on random variables , 1974 .
[28] A. Shiryaev,et al. Limit Theorems for Stochastic Processes , 1987 .
[29] H. Joe. Dependence Modeling with Copulas , 2014 .
[30] C. Genest,et al. A Primer on Copulas for Count Data , 2007, ASTIN Bulletin.
[31] Olivier Scaillet,et al. Testing for Equality between Two Copulas , 2006, J. Multivar. Anal..
[32] Ivan Kojadinovic,et al. An overview of nonparametric tests of extreme-value dependence and of some related statistical procedures , 2014, 1410.6784.
[33] Johan Segers,et al. When uniform weak convergence fails: empirical processes for dependence functions via epi- and hypographs , 2013, 1305.6408.
[34] Johanna Nešlehová,et al. On rank correlation measures for non-continuous random variables , 2007 .
[35] Ludger Rüschendorf,et al. Asymptotic Distributions of Multivariate Rank Order Statistics , 1976 .
[36] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[37] J. Segers. Asymptotics of empirical copula processes under non-restrictive smoothness assumptions , 2010, 1012.2133.
[38] Bruno Rémillard,et al. Local efficiency of a Cramér--von Mises test of independence , 2005 .
[39] L. Rüschendorf. Mathematical Risk Analysis , 2013 .
[40] Bruno Rémillard,et al. On the estimation of Spearman's rho and related tests of independence for possibly discontinuous multivariate data , 2013, J. Multivar. Anal..