Transcriptome analysis revealed detoxification gene expression changes in Tetranychus cinnabarinus challenged with ethyl oleate

[1]  M. Chruszcz,et al.  Delta class glutathione S-transferase (TuGSTd01) from the two-spotted spider mite Tetranychus urticae is inhibited by abamectin. , 2021, Pesticide biochemistry and physiology.

[2]  M. Zalucki,et al.  De Novo Transcriptomic Analyses Revealed Some Detoxification Genes and Related Pathways Responsive to Noposion Yihaogong® 5% EC (Lambda-Cyhalothrin 5%) Exposure in Spodoptera frugiperda Third-Instar Larvae , 2021, Insects.

[3]  Nian‐Feng Wan,et al.  Carmine spider mite Tetranychus cinnabarinus control: Laboratory and field efficacy and biochemical characterization of 2, 4-di-tertbutylphenol and ethyl oleate , 2021 .

[4]  T. Van Leeuwen,et al.  Short term transcriptional responses of P450s to phytochemicals in insects and mites , 2020, Current opinion in insect science.

[5]  T. Xin,et al.  Transcriptome analysis of Tetranychus cinnabarinus responses to exposure of an insecticide (diflubenzuron) , 2020, Systematic and Applied Acarology.

[6]  Benshui Shu,et al.  Transcriptome analysis of putative detoxification genes in the Asian citrus psyllid, Diaphorina citri. , 2020, Pest management science.

[7]  Nian‐Feng Wan,et al.  Transcriptomic analysis of the interactions between the Spodoptera exigua midgut and nucleopolyhedrovirus. , 2020, Pesticide biochemistry and physiology.

[8]  M. Isman Botanical Insecticides in the Twenty-First Century-Fulfilling Their Promise? , 2020, Annual review of entomology.

[9]  M. Riga,et al.  Overexpression of an alternative allele of carboxyl/choline esterase 4 (CCE04) of Tetranychus urticae is associated with high levels of resistance to the keto-enol acaricide spirodiclofen. , 2019, Pest management science.

[10]  G. Shen,et al.  Stability of cyflumetofen resistance in Tetranychus cinnabarinus and its correlation with glutathione-S-transferase gene expression. , 2019, Pest management science.

[11]  J. Vontas,et al.  Substrate specificity and promiscuity of horizontally transferred UDP-glycosyltransferases in the generalist herbivore Tetranychus urticae. , 2019, Insect biochemistry and molecular biology.

[12]  Yong-qiang Zhang,et al.  Acaricidal Mechanism of Scopoletin Against Tetranychus cinnabarinus , 2019, Front. Physiol..

[13]  Lin He,et al.  Functional analysis of four upregulated carboxylesterase genes associated with fenpropathrin resistance in Tetranychus cinnabarinus (Boisduval). , 2018, Pest management science.

[14]  G. Shen,et al.  Functional analysis of UGT201D3 associated with abamectin resistance in Tetranychus cinnabarinus (Boisduval) , 2018, Insect science.

[15]  T. Van Leeuwen,et al.  Why Do Herbivorous Mites Suppress Plant Defenses? , 2018, Front. Plant Sci..

[16]  J. Vontas,et al.  The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. , 2018, Current opinion in insect science.

[17]  Lei He,et al.  Response analysis of host Spodoptera exigua larvae to infection by Heliothis virescens ascovirus 3h (HvAV-3h) via transcriptome , 2018, Scientific Reports.

[18]  X. Gou,et al.  Identification and expression of cuticular protein genes based on Locusta migratoria transcriptome , 2017, Scientific Reports.

[19]  Yijuan Chen,et al.  Biochemical mechanisms of acaricidal activity of 2,4-di-tert-butylphenol and ethyl oleate against the carmine spider mite Tetranychus cinnabarinus , 2017, Journal of Pest Science.

[20]  G. Shen,et al.  Adaptation of acaricide stress facilitates Tetranychus urticae expanding against Tetranychus cinnabarinus in China , 2017, Ecology and evolution.

[21]  E. Stephanou,et al.  A glutathione-S-transferase (TuGSTd05) associated with acaricide resistance in Tetranychus urticae directly metabolizes the complex II inhibitor cyflumetofen. , 2017, Insect biochemistry and molecular biology.

[22]  Yijuan Chen,et al.  Biochemical mechanisms of acaricidal activity of 2,4-di-tert-butylphenol and ethyl oleate against the carmine spider mite Tetranychus cinnabarinus , 2017, Journal of Pest Science.

[23]  G. Benelli,et al.  Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. , 2016, Trends in plant science.

[24]  Richard M. Clark,et al.  Complex Evolutionary Dynamics of Massively Expanded Chemosensory Receptor Families in an Extreme Generalist Chelicerate Herbivore , 2016, Genome biology and evolution.

[25]  W. Ding,et al.  RNA-Seq Analysis Reveals Candidate Targets for Curcumin against Tetranychus cinnabarinus , 2016, BioMed research international.

[26]  G. Shen,et al.  Characteristics of carboxylesterase genes and their expression-level between acaricide-susceptible and resistant Tetranychus cinnabarinus (Boisduval). , 2016, Pesticide biochemistry and physiology.

[27]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[28]  T. Van Leeuwen,et al.  The Molecular Evolution of Xenobiotic Metabolism and Resistance in Chelicerate Mites. , 2016, Annual review of entomology.

[29]  L. Tirry,et al.  Molecular analysis of cyenopyrafen resistance in the two-spotted spider mite Tetranychus urticae. , 2016, Pest management science.

[30]  K. Bock The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution. , 2016, Biochemical pharmacology.

[31]  Richard M. Clark,et al.  Transcriptome profiling of a spirodiclofen susceptible and resistant strain of the European red mite Panonychus ulmi using strand-specific RNA-seq , 2015, BMC Genomics.

[32]  Yijuan Chen,et al.  Acaricidal activity of compounds from Cinnamomum camphora (L.) Presl against the carmine spider mite, Tetranychus cinnabarinus. , 2015, Pest management science.

[33]  Evgeny M. Zdobnov,et al.  BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs , 2015, Bioinform..

[34]  Yan Sun,et al.  The cuticle proteins: a putative role for deltamethrin resistance in Culex pipiens pallens , 2015, Parasitology Research.

[35]  A. Nisbet,et al.  Characterisation of Dermanyssus gallinae glutathione S-transferases and their potential as acaricide detoxification proteins , 2015, Parasites & Vectors.

[36]  Maria Riga,et al.  Functional characterization of glutathione S-transferases associated with insecticide resistance in Tetranychus urticae. , 2015, Pesticide biochemistry and physiology.

[37]  R. Pavela Acaricidal properties of extracts and major furanochromenes from the seeds of Ammi visnaga Linn. against Tetranychus urticae Koch , 2015 .

[38]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[39]  Yijuan Chen,et al.  Acaricidal, repellent, and oviposition-deterrent activities of 2,4-di-tert-butylphenol and ethyl oleate against the carmine spider mite Tetranychus cinnabarinus , 2015, Journal of Pest Science.

[40]  W. Ding,et al.  Molecular cloning and expression of glutathione S-transferases involved in propargite resistance of the carmine spider mite, Tetranychus cinnabarinus (Boisduval). , 2014, Pesticide biochemistry and physiology.

[41]  D. Heckel,et al.  Bacterial origin of a diverse family of UDP-glycosyltransferase genes in the Tetranychus urticae genome. , 2014, Insect biochemistry and molecular biology.

[42]  M. Riga,et al.  Abamectin is metabolized by CYP392A16, a cytochrome P450 associated with high levels of acaricide resistance in Tetranychus urticae. , 2014, Insect biochemistry and molecular biology.

[43]  T. Van Leeuwen,et al.  The ABC gene family in arthropods: comparative genomics and role in insecticide transport and resistance. , 2014, Insect biochemistry and molecular biology.

[44]  D. Welker,et al.  Detoxification and stress response genes expressed in a western North American bumble bee, Bombus huntii (Hymenoptera: Apidae) , 2013, BMC Genomics.

[45]  R. Nauen,et al.  Molecular analysis of resistance to acaricidal spirocyclic tetronic acids in Tetranychus urticae: CYP392E10 metabolizes spirodiclofen, but not its corresponding enol. , 2013, Insect biochemistry and molecular biology.

[46]  Richard M. Clark,et al.  A burst of ABC genes in the genome of the polyphagous spider mite Tetranychus urticae , 2013, BMC Genomics.

[47]  A. Mailleux,et al.  A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides , 2013, Journal of Pest Science.

[48]  J. Niu,et al.  Transcription profiling of two cytochrome P450 genes potentially involved in acaricide metabolism in citrus red mite Panonychus citri , 2013 .

[49]  L. Tirry,et al.  Spider mite control and resistance management: does a genome help? , 2013, Pest management science.

[50]  M. Lorenzen,et al.  Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum , 2013, BMC Genomics.

[51]  Richard M. Clark,et al.  A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae , 2012, Proceedings of the National Academy of Sciences.

[52]  G. Smagghe,et al.  Transcriptome analysis of the citrus red mite, Panonychus citri, and its gene expression by exposure to insecticide/acaricide , 2012, Insect molecular biology.

[53]  Stefan R. Henz,et al.  The genome of Tetranychus urticae reveals herbivorous pest adaptations , 2011, Nature.

[54]  Wen-cai Lu,et al.  Suitable Reference Gene Selection for Different Strains and Developmental Stages of the Carmine Spider Mite, Tetranychus cinnabarinus, using Quantitative Real-Time PCR , 2010, Journal of insect science.

[55]  R. Rattan Mechanism of action of insecticidal secondary metabolites of plant origin , 2010 .

[56]  J. McCarthy,et al.  Increased transcription of Glutathione S-transferases in acaricide exposed scabies mites , 2010, Parasites & Vectors.

[57]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[58]  Xuegong Zhang,et al.  DEGseq: an R package for identifying differentially expressed genes from RNA-seq data , 2010, Bioinform..

[59]  L. Després,et al.  The evolutionary ecology of insect resistance to plant chemicals. , 2007, Trends in ecology & evolution.

[60]  May R Berenbaum,et al.  Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. , 2007, Annual review of entomology.

[61]  J. McCarthy,et al.  Identification of ABC transporters in Sarcoptes scabiei , 2006, Parasitology.

[62]  Gene E Robinson,et al.  Regulation of behavioral maturation by a primer pheromone produced by adult worker honey bees. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Janet Hemingway,et al.  Evolution of Supergene Families Associated with Insecticide Resistance , 2002, Science.

[64]  R. Feyereisen Insect P450 enzymes. , 1999, Annual review of entomology.

[65]  M. Kiełkiewicz Dispersal of Tetranychus cinnabarinus on various tomato cultivars , 1996 .