Nonrigid Patient Setup Errors in the Head-and-Neck Region

Purpose:To investigate the magnitude and clinical relevance of relative motion/nonrigid setup errors in the head-and-neck (H&N) region.Material and Methods:Eleven patients with tumors in the H&N region were immobilized in thermoplastic head masks. Patient positioning was verified using a kilovoltage cone-beam CT (kv CBCT) prior to 100 treatment fractions. Five different regions of interest (ROIs) were selected for automatic image registration of planning CT and verification CBCT: (1) the whole volume covering planning CT and CBCT, (2) the skull, (3) the mandible, (4) C1–C3, and (5) C4–C6. Differences were calculated describing relative motion between the ROIs.Results:The 3-D patient setup error was 3.2 mm ± 1.7 mm based on registration of the whole volume. No systematic relative motion (group mean errors < 0.5 mm and < 0.5°) between planning and treatment for any ROI was observed. Mobility was largest for the skull and the mandible relative to C4–C6 with 3-D displacements of 4.7 mm ± 2.5 mm and 4.4 mm ± 2.5 mm. Relative rotations were largest around the left-right axis (nodding) between C1–C3 and C4–C6 with maximum 11°. No time trend of relative motion was observed. Margins for compensation of relative motion ranged between 5 mm and 10 mm.Conclusion:The simplification of the patient as a rigid body was shown to result in significant errors due to relative motion in the H&N region. Margins for compensation of relative motion exceeded margins for compensation of patient positioning errors.Ziel:Untersucht wurden das Ausmaß und die klinische Relevanz nichtrigider Lagerungsfehler bei der Behandlung von Kopf-Hals-Tumoren.Material und Methodik:Elf Patienten waren für die Strahlenbehandlung von Kopf-Hals-Tumoren mittels thermoplastischer Masken immobilisiert. Bei 100 Fraktionen wurde die Patientenpositionierung mittels eines Kilovolt-Cone-Beam-CT (kv-CBCT) kontrolliert. Die automatische Registrierung von Planungs-CT und Verifikations-CBCT basierte auf fünf verschiedenen Regionen: 1. dem gesamten Volumen von Planungs-CT und Verifikations-CBCT, 2. Schädel, 3. Unterkiefer, 4. C1–C3 und 5. C4–C6. Die Unterschiede zwischen den Registrierungen beschrieben das Ausmaß der Relativbewegungen im Kopf-Hals-Bereich.Ergebnisse:Der dreidimensionale Lagerungsfehler, basierend auf Region 1 (gesamtes Volumen), betrug 3,2 mm ± 1,7 mm. Für keine der anatomischen Regionen wurde eine systematische Relativbewegung zwischen Planung und Behandlung festgestellt (< 0,5 mm und < 0,5°). Am größten war die Beweglichkeit des Schädels und des Unterkiefers relativ zur kaudalen Halswirbelsäule: 4,7 mm ± 2,5 mm und 4,4 mm ± 2,5 mm. Rotationsbewegungen waren zwischen kranialer und kaudaler Halswirbelsäule am größten: maximal 11° um die Links-rechts-Achse (Nickbewegung). Ein zeitlicher Trend der Relativbewegungen wurde nicht beobachtet. Sicherheitssäume von 5–10 mm waren zur Kompensation dieser Relativbewegungen notwendig.Schlussfolgerung:Substantielle Relativbewegungen im Kopf-Hals-Bereich widerlegen ein rigides Patientenmodell. Sicherheitssäume von 5–10 mm zur Kompensation dieser Relativbewegungen verdeutlichen die klinische Relevanz.

[1]  Y. Nishimura,et al.  Analysis of interfractional set-up errors and intrafractional organ motions during IMRT for head and neck tumors to define an appropriate planning target volume (PTV)- and planning organs at risk volume (PRV)-margins. , 2006, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[2]  Matthias Guckenberger,et al.  Magnitude and clinical relevance of translational and rotational patient setup errors: a cone-beam CT study. , 2006, International journal of radiation oncology, biology, physics.

[3]  G. Studer,et al.  Minimized Risk Profile Following Intensity-Modulated Radiation Therapy (IMRT) , 2006 .

[4]  Stanley J. Rosenthal,et al.  Intra- and interfractional patient motion for a variety of immobilization devices. , 2005, Medical physics.

[5]  Matthias Guckenberger,et al.  Intensity-Modulated Radiotherapy (IMRT) of Localized Prostate Cancer , 2007, Strahlentherapie und Onkologie.

[6]  S. Tribius,et al.  Hyperfractionated-Accelerated Radiotherapy Followed by Radical Surgery in Locally Advanced Tumors of the Oral Cavity , 2006, Strahlentherapie und Onkologie.

[7]  G. Studer,et al.  IMRT in Hypopharyngeal Tumors , 2006, Strahlentherapie und Onkologie.

[8]  R Mohan,et al.  The effect of setup uncertainty on normal tissue sparing with IMRT for head-and-neck cancer. , 2001, International journal of radiation oncology, biology, physics.

[9]  Jeng-Fong Chiou,et al.  Effect of Regression of Enlarged Neck Lymph Nodes on Radiation Doses Received by Parotid Glands During Intensity-Modulated Radiotherapy for Head and Neck Cancer , 2006, American journal of clinical oncology.

[10]  Frederik Wenz,et al.  Repositioning accuracy of two different mask systems-3D revisited: comparison using true 3D/3D matching with cone-beam CT. , 2006, International Journal of Radiation Oncology, Biology, Physics.

[11]  Matthias Guckenberger,et al.  Positioning accuracy of cone-beam computed tomography in combination with a HexaPOD robot treatment table. , 2007, International journal of radiation oncology, biology, physics.

[12]  D Verellen,et al.  Electronic portal imaging with on-line correction of setup error in thoracic irradiation: clinical evaluation. , 1998, International journal of radiation oncology, biology, physics.

[13]  W. Schlegel,et al.  Fractionated Stereotactic Radiation Therapy in the Management of Benign Cavernous Sinus Meningiomas , 2006, Strahlentherapie und Onkologie.

[14]  D Geraint Lewis,et al.  Observer variability when evaluating patient movement from electronic portal images of pelvic radiotherapy fields. , 2005, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[15]  Prakash Chinnaiyan,et al.  The impact of daily setup variations on head-and-neck intensity-modulated radiation therapy. , 2005, International journal of radiation oncology, biology, physics.

[16]  M. Herk Errors and margins in radiotherapy. , 2004 .

[17]  Matthias Guckenberger,et al.  Precision of Image-Guided Radiotherapy (IGRT) in Six Degrees of Freedom and Limitations in Clinical Practice , 2007, Strahlentherapie und Onkologie.

[18]  Kevin J Harrington,et al.  Assessment of a customised immobilisation system for head and neck IMRT using electronic portal imaging. , 2005, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[19]  P. Remeijer,et al.  Set-up verification using portal imaging; review of current clinical practice. , 2001, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[20]  Matthias Guckenberger,et al.  Intensity-modulated radiotherapy (IMRT) of localized prostate cancer: a review and future perspectives. , 2007, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al].

[21]  Radhe Mohan,et al.  Multiple regions-of-interest analysis of setup uncertainties for head-and-neck cancer radiotherapy. , 2006, International journal of radiation oncology, biology, physics.

[22]  Radhe Mohan,et al.  Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. , 2004, International journal of radiation oncology, biology, physics.

[23]  Arjan Bel,et al.  Adequate margins for random setup uncertainties in head-and-neck IMRT. , 2005, International journal of radiation oncology, biology, physics.

[24]  Ping Xia,et al.  Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer. , 2006, International journal of radiation oncology, biology, physics.