The Development of the Bradykinin Agonist Labradimil as a Means to Increase the Permeability of the Blood-Brain Barrier

[1]  K. Wallner,et al.  Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. , 1989, International journal of radiation oncology, biology, physics.

[2]  K. Black,et al.  Intracarotid infusion of bradykinin selectively increases blood-tumor permeability in 9L and C6 brain tumors , 1994, Brain Research.

[3]  K. Black,et al.  Use of CereportTM (RMP-7) to Increase Delivery of Carboplatin to Gliomas: Insight and Parameters for Intracarotid Infusion Via a Single-Lumen Cannula , 1999 .

[4]  R. Bartus,et al.  Bradykinin modulation of tumor vasculature: II. activation of nitric oxide and phospholipase A2/prostaglandin signaling pathways synergistically modifies vascular physiology and morphology to enhance delivery of chemotherapeutic agents to tumors. , 2001, The Journal of pharmacology and experimental therapeutics.

[5]  D. Robertson,et al.  Pharmacological Modification of Bradykinin Induced Breakdown of the Blood-brain Barrier , 1986, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[6]  K. Kinzler,et al.  Genes expressed in human tumor endothelium. , 2000, Science.

[7]  W. Pardridge Transport of small molecules through the blood-brain barrier: biology and methodology. , 1995, Advanced drug delivery reviews.

[8]  K. Miles,et al.  A simplified technique for measurement of blood-brain barrier permeability using CT: Preliminary results of the effect of RMP-7 , 1996 .

[9]  S. Harik,et al.  Bradykinin Receptors of Cerebral Microvessels Stimulate Phosphoinositide Turnover , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[10]  R. Bartus,et al.  Bradykinin modulation of tumor vasculature: I. Activation of B2 receptors increases delivery of chemotherapeutic agents into solid peripheral tumors, enhancing their efficacy. , 2001, The Journal of pharmacology and experimental therapeutics.

[11]  A. Boddy,et al.  RMP-7 , 1997, CNS drugs.

[12]  F. Marceau,et al.  The degradation of bradykinin (BK) and of des-Arg9-BK in plasma. , 1981, Canadian journal of physiology and pharmacology.

[13]  E. G. Erdös,et al.  Some old and some new ideas on kinin metabolism. , 1990 .

[14]  R. Bartus,et al.  Enhanced delivery of carboplatin into brain tumours with intravenous CereportTM (RMP-7): dramatic differences and insight gained from dosing parameters , 1999, British Journal of Cancer.

[15]  R. Couture,et al.  New selective agonists for neurokinin receptors: pharmacological tools for receptor characterization. , 1988, Trends in pharmacological sciences.

[16]  T. Cloughesy,et al.  Intracarotid infusion of RMP-7, a bradykinin analog, and transport of gallium-68 ethylenediamine tetraacetic acid into human gliomas. , 1997, Journal of neurosurgery.

[17]  D. Louis,et al.  Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses , 1999, Nature Medicine.

[18]  C. Strader,et al.  Expression cloning of a human B1 bradykinin receptor. , 1994, The Journal of biological chemistry.

[19]  K. Black,et al.  Unlocking the Blood–Brain Barrier: A Role for RMP-7 in Brain Tumor Therapy , 1996, Experimental Neurology.

[20]  Hugh Davson,et al.  Physiology of the CSF and Blood-Brain Barriers , 1996 .

[21]  B V Zlokovic,et al.  Neuroactive peptides and amino acids at the blood-brain barrier: possible implications for drug abuse. , 1992, NIDA research monograph.

[22]  R. Heller-Harrison,et al.  The bradykinin analog RMP-7 increases intracellular free calcium levels in rat brain microvascular endothelial cells. , 1994, The Journal of pharmacology and experimental therapeutics.

[23]  Stanley I. Rapoport,et al.  Blood-Brain Barrier in Physiology and Medicine , 1976 .

[24]  S. Stenning,et al.  Survival following treatment with RMP-7 and carboplatin in malignant glioma who grade III–IV: Comparison with matched controls , 1997 .

[25]  K. Black Biochemical opening of the blood-brain barrier. , 1995, Advanced drug delivery reviews.

[26]  E. Nicolaides,et al.  AN IN VIVO ESTIMATION OF THE POTENCIES AND HALF-LIVES OF SYNTHETIC BRADYKININ AND KALLIDIN. , 1965, The Journal of pharmacology and experimental therapeutics.

[27]  P. Stewart,et al.  The effect of cellular microenvironment on vessels in the brain. Part 1: Vessel structure in tumour, peritumour and brain from humans with malignant glioma. , 1991, International journal of radiation biology.

[28]  L. Edvinsson,et al.  Effects of Bradykinin on Pial Arteries and Arterioles in vitro and in situ , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[29]  F. Marceau,et al.  Induction of beta 1-receptors for kinins in the rabbit by a bacterial lipopolysaccharide. , 1981, European journal of pharmacology.

[30]  F. Bloom,et al.  Central analgesic actions of loperamide following transient permeation of the blood brain barrier with Cereport™ (RMP-7) 1 Published on the World Wide Web on 30 June 1998. 1 , 1998, Brain Research.

[31]  T. Cloughesy,et al.  Intra-arterial Cereport (RMP-7) and carboplatin: a dose escalation study for recurrent malignant gliomas. , 1999, Neurosurgery.

[32]  R. Bartus,et al.  Pathway across blood-brain barrier opened by the bradykinin agonist, RMP-7 , 1995, Brain Research.

[33]  R. Bartus,et al.  Intravenous cereport (RMP-7) modifies topographic uptake profile of carboplatin within rat glioma and brain surrounding tumor, elevates platinum levels, and enhances survival. , 2000, The Journal of pharmacology and experimental therapeutics.

[34]  R. Bartus,et al.  Dissociation of blood-brain barrier permeability and the hypotensive effects of the bradykinin B2 agonist, RMP-7. , 1996, Immunopharmacology.

[35]  A. Hanby,et al.  An inbred colony of oncogene transgenic mice: diversity of tumours and potential as a therapeutic model. , 1996, British Journal of Cancer.

[36]  R. Bartus,et al.  Intravenous RMP-7 selectively increases uptake of carboplatin into rat brain tumors. , 1996, Cancer research.

[37]  N. Rhaleb,et al.  Structure-activity studies of bradykinin and related peptides. B2-receptor antagonists. , 1991, Hypertension.

[38]  J. Kordower,et al.  Evidence that Cereport's Ability to Increase Permeability of Rat Gliomas Is Dependent Upon Extent of Tumor Growth: Implications for Treating Newly Emerging Tumor Colonies , 2000, Experimental Neurology.

[39]  Fred H. Hochberg,et al.  Assumptions in the radiotherapy of glioblastoma , 1980, Neurology.

[40]  K. Black,et al.  Enhanced cytokines delivery and intercellular adhesion molecule 1 (ICAM-1) expression in glioma by intracarotid infusion of bradykinin analog, RMP-7. , 1997, Neurological research.

[41]  W. Yung,et al.  Intravenous carboplatin for recurrent malignant glioma: a phase II study. , 1991, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[42]  Betz Al An overview of the multiple functions of the blood-brain barrier. , 1992 .

[43]  S. Kumakura,et al.  Role of bradykinin in the vascular permeability response induced by carrageenin in rats , 1988, British journal of pharmacology.

[44]  Stephen E. Jones,et al.  Adjuvant Therapy of Cancer , 1990 .

[45]  Bartus Rt The blood-brain barrier as a target for pharmacological modulation. , 1999 .

[46]  M. Moeschberger,et al.  Enhanced delivery of boronophenylalanine for neutron capture therapy of brain tumors using the bradykinin analog Cereport (Receptor-Mediated Permeabilizer-7). , 1999, Neurosurgery.

[47]  D. Regoli,et al.  Pharmacology of bradykinin and related kinins. , 1980, Advances in experimental medicine and biology.

[48]  P. J. Elliott,et al.  Controlled Modulation of BBB Permeability Using the Bradykinin Agonist, RMP-7 , 1996, Experimental Neurology.

[49]  B. Carey,et al.  Quantitative Imaging in Oncology , 1996 .

[50]  G. Giaccone,et al.  Teniposide for brain metastases of small-cell lung cancer: a phase II study. European Organization for Research and Treatment of Cancer Lung Cancer Cooperative Group. , 1995, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[51]  Roger M. Brown,et al.  Bioavailability of drugs to the brain and the blood brain barrier. , 1992, NIDA research monograph.

[52]  K. Black,et al.  Intracarotid infusion of RMP-7, a bradykinin analog: a method for selective drug delivery to brain tumors. , 1994, Journal of neurosurgery.

[53]  G. Lesser,et al.  The chemotherapy of high-grade astrocytomas. , 1994, Seminars in oncology.

[54]  K. Bhoola,et al.  Bioregulation of kinins: kallikreins, kininogens, and kininases. , 1992, Pharmacological reviews.

[55]  M. Fukui,et al.  Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of bradykinin analog, RMP-7. , 1996, Neurosurgery.

[56]  R. Bartus,et al.  Permeability of the blood brain barrier by the bradykinin agonist, RMP-7: evidence for a sensitive, auto-regulated, receptor-mediated system. , 1996, Immunopharmacology.

[57]  M. Moeschberger,et al.  Improved survival after boron neutron capture therapy of brain tumors by Cereport-mediated blood-brain barrier modulation to enhance delivery of boronophenylalanine. , 2000, Neurosurgery.

[58]  S. Rennard,et al.  Role of peptidases in bradykinin-induced increase in vascular permeability in vivo. , 1992, Circulation research.

[59]  N. Bleehen,et al.  A phase I study of intravenous RMP-7 with carboplatin in patients with progression of malignant glioma. , 1998, European journal of cancer.

[60]  K. Black,et al.  Bradykinin Selectively Opens Blood-Tumor Barrier in Experimental Brain Tumors , 1994, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[61]  A. Unterberg,et al.  Effects of Bradykinin on Permeability and Diameter of Pial Vessels In vivo , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[62]  C. Strader,et al.  Cloning and pharmacological characterization of a human bradykinin (BK-2) receptor. , 1992, Biochemical and biophysical research communications.

[63]  N. Rhaleb,et al.  Kinin Receptor Subtypes , 1990, Journal of cardiovascular pharmacology.

[64]  A. Dray,et al.  Bradykinin and inflammatory pain , 1993, Trends in Neurosciences.