Decoding of Subspace Codes, a Problem of Schubert Calculus over Finite Fields

Schubert calculus provides algebraic tools to solve enumerative problems. There have been several applied problems in systems theory, linear algebra and physics which were studied by means of Schubert calculus. The method is most powerful when the base field is algebraically closed. In this article we first review some of the successes Schubert calculus had in the past. Then we show how the problem of decoding of subspace codes used in random network coding can be formulated as a problem in Schubert calculus. Since for this application the base field has to be assumed to be a finite field new techniques will have to be developed in the future.

[1]  Anna-Lena Trautmann,et al.  Isometry and automorphisms of constant dimension codes , 2012, 1205.5465.

[2]  R. Brockett,et al.  Multivariable Nyquist criteria, root loci, and pole placement: A geometric viewpoint , 1981 .

[3]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[4]  Andrei Gabrielov,et al.  Pole Placement by Static Output Feedback for Generic Linear Systems , 2002, SIAM J. Control. Optim..

[5]  Natalia Silberstein,et al.  Error-Correcting Codes in Projective Spaces Via Rank-Metric Codes and Ferrers Diagrams , 2008, IEEE Transactions on Information Theory.

[6]  BERND STURMFELS,et al.  Numerical Schubert Calculus , 1998, J. Symb. Comput..

[7]  Veerle Ledoux,et al.  Introductory Schubert calculus , 2010 .

[8]  S. Kleiman,et al.  Problem 15: Rigorous foundation of Schubert''s enumerative calculus , 1976 .

[9]  Frank Sottile,et al.  Enumerative geometry for the real Grassmannian of lines in projective space , 1997 .

[10]  Frank R. Kschischang,et al.  A Rank-Metric Approach to Error Control in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[11]  Alexander Vardy,et al.  Error-Correcting Codes in Projective Space , 2011, IEEE Trans. Inf. Theory.

[12]  Joachim Rosenthal,et al.  Spread codes and spread decoding in network coding , 2008, 2008 IEEE International Symposium on Information Theory.

[13]  Joachim Rosenthal,et al.  A complete characterization of irreducible cyclic orbit codes and their Plücker embedding , 2011, Des. Codes Cryptogr..

[14]  Sascha Kurz,et al.  Construction of Large Constant Dimension Codes with a Prescribed Minimum Distance , 2008, MMICS.

[15]  Joachim Rosenthal,et al.  Output Feedback Pole Assignment for Transfer Functions with Symmetries , 2006, SIAM J. Control. Optim..

[16]  W. Fulton Eigenvalues, invariant factors, highest weights, and Schubert calculus , 1999, math/9908012.

[17]  Joachim Rosenthal,et al.  Pole Placement with Fields of Positive Characteristic , 2009, 0912.2932.

[18]  Venkatesan Guruswami,et al.  List decoding of error correcting codes , 2001 .

[19]  T. Rajagopalan,et al.  Pole assignment with output feedback , 1984, Autom..

[20]  H. Schubert Beziehungen zwischen den linearen Räumen auferlegbaren charakteristischen Bedingungen , 1891 .

[21]  Joachim Rosenthal,et al.  Cyclic Orbit Codes , 2011, IEEE Transactions on Information Theory.

[22]  Frank R. Kschischang,et al.  On Metrics for Error Correction in Network Coding , 2008, IEEE Transactions on Information Theory.

[23]  R. Koetter,et al.  The benefits of coding over routing in a randomized setting , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[24]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[25]  Frank Sottile,et al.  Real Schubert Calculus: Polynomial Systems and a Conjecture of Shapiro and Shapiro , 1999, Exp. Math..

[26]  U. Helmke,et al.  Eigenvalue inequalities and Schubert calculus , 1995 .