Elucidating the Mn2+ Dopant Sites in Two-Dimensional Na–In Halide Perovskite

[1]  S. Sapra,et al.  Self-Trapped Excitons Mediated Energy Transfer to Sm3+ in Cs2AgIn(1–x)SmxCl6:Bi Double Perovskite Nanocrystals , 2022, The Journal of Physical Chemistry C.

[2]  S. Sapra,et al.  Doping Mn2+ in hybrid Ruddlesden–Popper phase of layered double perovskite (BA)4AgBiBr8 , 2022, Nanotechnology.

[3]  Y. Liu,et al.  Lead-Free Double Perovskite Cs2NaErCl6: Li+ as High-Stability Anodes for Li-Ion Batteries. , 2022, The journal of physical chemistry letters.

[4]  S. Sapra,et al.  Impact of Bifunctional Ligands on Charge Transfer Kinetics in CsPbBr3-CdSe/CdS/ZnS Nanohybrids. , 2022, The journal of physical chemistry letters.

[5]  M. Wasielewski,et al.  Interstitial Nature of Mn2+ Doping in 2D Perovskites. , 2021, ACS nano.

[6]  I. Castelli,et al.  Free Carriers versus Self-Trapped Excitons at Different Facets of Ruddlesden–Popper Two-Dimensional Lead Halide Perovskite Single Crystals , 2021, The journal of physical chemistry letters.

[7]  Arunima K. Singh,et al.  Exploring Exciton and Polaron Dominated Photophysical Phenomena in Ruddlesden-Popper Phases of Ban+1ZrnS3n+1 (n = 1-3) from Many Body Perturbation Theory. , 2021, The journal of physical chemistry letters.

[8]  A. Cheetham,et al.  Layered Double Perovskites , 2021, Annual Review of Materials Research.

[9]  Hong Jiang,et al.  Strong Self‐Trapped Exciton Emissions in Two‐Dimensional Na‐In Halide Perovskites Triggered by Antimony Doping , 2021, Angewandte Chemie.

[10]  H. Karunadasa,et al.  Doubling the Stakes: The Promise of Halide Double Perovskites. , 2021, Angewandte Chemie.

[11]  Jinju Zheng,et al.  Mn2+-doped Cs2NaInCl6 double perovskites and their photoluminescence properties , 2021, Journal of Materials Science.

[12]  Ram S. Lamba,et al.  Lead-Free Alloyed Double-Perovskite Nanocrystals of Cs2(NaxAg1–x)BiBr6 with Tunable Band Gap , 2021 .

[13]  Z. Xia,et al.  Mn2+‐Doped Metal Halide Perovskites: Structure, Photoluminescence, and Application , 2020, Laser & Photonics Reviews.

[14]  D. Solís-Ibarra,et al.  The Emergence of Halide Layered Double Perovskites , 2020 .

[15]  S. Ye,et al.  Mn2+-Mn2+ Magnetic Coupling Effect on Photoluminescence Revealed by Photomagnetism in CsMnCl3. , 2020, The journal of physical chemistry letters.

[16]  C. Falcony,et al.  Enhanced Luminescence and Mechanistic Studies on Layered Double-Perovskite Phosphors: Cs4Cd1–xMnxBi2Cl12 , 2020 .

[17]  Z. Xia,et al.  Broad-band emission in metal halide perovskites: Mechanism, materials, and applications , 2020 .

[18]  Hong Jiang,et al.  Tunable Dual-Emission in Monodispersed Sb3+ /Mn2+ Codoped Cs2 NaInCl6 Perovskite Nanocrystals through an Energy Transfer Process. , 2020, Small.

[19]  Manish Kumar,et al.  High-throughput screening to modulate electronic and optical properties of alloyed Cs2AgBiCl6 for enhanced solar cell efficiency , 2020, Journal of Physics: Materials.

[20]  M. Loi,et al.  Extrinsic nature of the broad photoluminescence in lead iodide-based Ruddlesden–Popper perovskites , 2020, Nature Communications.

[21]  P. Woodward,et al.  Four Lead-free Layered Double Perovskites with the n = 1 Ruddlesden-Popper Structure. , 2020, Inorganic chemistry.

[22]  Weiqiao Deng,et al.  Manganese-Doped, Lead-Free Double Perovskite Nanocrystals for Bright Orange-Red Emission , 2020, ACS central science.

[23]  Dong‐sheng Li,et al.  New Insights into Mn-Mn Coupling Interaction-Directed Photoluminescence Quenching Mechanism in Mn2+-Doped Semiconductors. , 2020, Journal of the American Chemical Society.

[24]  C. Cazorla,et al.  Tuning Magnetism and Photocurrent in Mn-Doped Organic-Inorganic Perovskites. , 2020, The journal of physical chemistry letters.

[25]  Z. Xia,et al.  Unveiling Mn2+ Dopants States in Two-Dimensional Halide Perovskite toward High Efficient Photoluminescence. , 2020, The journal of physical chemistry letters.

[26]  Dan Huang,et al.  Highly Efficient Blue Emission from Self-Trapped Excitons in Stable Sb3+-Doped Cs2NaInCl6 Double Perovskites. , 2020, The journal of physical chemistry letters.

[27]  S. Ray,et al.  Enhanced Photocurrent owing to Shuttling of Charge Carriers across 4-Aminothiophenol Functionalized MoSe2-CsPbBr3 Nanohybrids. , 2020, ACS applied materials & interfaces.

[28]  K. Maji,et al.  2D Nanoplates and Scaled-Up Bulk Polycrystals of Ruddlesden–Popper Cs2PbI2Cl2 for Optoelectronic Applications , 2020 .

[29]  S. Sapra,et al.  Precursor-Mediated Synthesis of Shape-Controlled Colloidal CsPbBr3 Perovskite Nanocrystals and Their Nanofiber-Directed Self-Assembly , 2020 .

[30]  Z. Xia,et al.  Homo/Hetero-Valent Doping Mediated Self-Trapped Excitons Emission and Energy Transfer in Mn-doped Cs2Na1-xAgxBiCl6 Double Perovskites. , 2019, The journal of physical chemistry letters.

[31]  Mingkui Wang,et al.  Red-emitting CsPbBrI2/PbSe heterojunction nanocrystals with high luminescent efficiency and stability for bright light-emitting diodes , 2019 .

[32]  A. Cheetham,et al.  Chemical and Structural Diversity of Hybrid Layered Double Perovskite Halides. , 2019, Journal of the American Chemical Society.

[33]  W. Mao,et al.  Pressure-Induced Emission (PIE) and Phase Transition of a Two-dimensional Halide Double Perovskite (BA)4AgBiBr8 (BA = CH3(CH2)3NH3+). , 2019, Angewandte Chemie.

[34]  S. Sapra,et al.  Band Gap Engineering in Cs2(NaxAg1-x)BiCl6 Double Perovskite Nanocrystals. , 2019, The journal of physical chemistry letters.

[35]  William W. Yu,et al.  Oxalic Acid Enabled Emission Enhancement and Continuous Extraction of Chloride from Cesium Lead Chloride/Bromide Perovskite Nanocrystals. , 2019, Small.

[36]  Zheshuai Lin,et al.  Optically Modulated Ultra-Broad-Band Warm White Emission in Mn2+-Doped (C6H18N2O2)PbBr4 Hybrid Metal Halide Phosphor , 2019, Chemistry of Materials.

[37]  N. Pradhan Mn-Doped Semiconductor Nanocrystals: 25 Years and Beyond. , 2019, The journal of physical chemistry letters.

[38]  J. Zhang,et al.  Efficient Trap-Mediated Mn2+ Dopant Emission in Two Dimensional Single-Layered Perovskite (CH3CH2NH3)2PbBr4 , 2019, The Journal of Physical Chemistry C.

[39]  N. Pradhan,et al.  Insights of Doping and the Photoluminescence Properties of Mn-Doped Perovskite Nanocrystals. , 2019, The journal of physical chemistry letters.

[40]  Anirban Dutta,et al.  Doping Mn(II) in All-Inorganic Ruddlesden-Popper Phase of Tetragonal Cs2PbCl2I2 Perovskite Nanoplatelets. , 2019, The journal of physical chemistry letters.

[41]  Angshuman Nag,et al.  Mn Doping in Centimeter-Sized Layered 2D Butylammonium Lead Bromide (BA2PbBr4) Single Crystals and Their Optical Properties , 2019, The Journal of Physical Chemistry C.

[42]  Jing Zhao,et al.  Unraveling the mechanochemical synthesis and luminescence in MnII-based two-dimensional hybrid perovskite (C4H9NH3)2PbCl4 , 2019, Science China Materials.

[43]  P. Woodward,et al.  Cs2NaBiCl6:Mn2+—A New Orange-Red Halide Double Perovskite Phosphor , 2019, Chemistry of Materials.

[44]  Zhu-An Xu,et al.  Temperature- and Mn2+ Concentration-Dependent Emission Properties of Mn2+-Doped ZnSe Nanocrystals. , 2019, Journal of the American Chemical Society.

[45]  Anirban Dutta,et al.  Doping Mn2+ in Single-Crystalline Layered Perovskite Microcrystals , 2019, ACS Energy Letters.

[46]  M. Fanciulli,et al.  Trap-Mediated Two-Step Sensitization of Manganese Dopants in Perovskite Nanocrystals , 2018, ACS Energy Letters.

[47]  M. Fanciulli,et al.  Colloidal Synthesis of Double Perovskite Cs2AgInCl6 and Mn-Doped Cs2AgInCl6 Nanocrystals , 2018, Journal of the American Chemical Society.

[48]  S. Ye,et al.  Tuning the decay of Mn2+ emission via magnetically coupling with Cr3+ in ZnGa2O4 , 2018, Journal of Applied Physics.

[49]  J. Kundu,et al.  Efficient Exciton to Dopant Energy Transfer in Mn2+-Doped (C4H9NH3)2PbBr4 Two-Dimensional (2D) Layered Perovskites , 2017 .

[50]  D. Gamelin,et al.  Photoluminescence Temperature Dependence, Dynamics, and Quantum Efficiencies in Mn2+-Doped CsPbCl3 Perovskite Nanocrystals with Varied Dopant Concentration , 2017 .

[51]  Yitong Dong,et al.  Dynamics of Exciton–Mn Energy Transfer in Mn-Doped CsPbCl3 Perovskite Nanocrystals , 2017 .

[52]  B. Kale,et al.  Triangular CdS nanostructure: effect of Mn doping on photoluminescence, electron spin resonance, and magneto-optical properties , 2017, Journal of Nanoparticle Research.

[53]  Angshuman Nag,et al.  Beyond Colloidal Cesium Lead Halide Perovskite Nanocrystals: Analogous Metal Halides and Doping , 2017 .

[54]  S. Dutta,et al.  Doping Mn2+ in Lead Halide Perovskite Nanocrystals: Successes and Challenges , 2017 .

[55]  M. Jagadeeswararao,et al.  Colloidal Mn-Doped Cesium Lead Halide Perovskite Nanoplatelets , 2017 .

[56]  V. Klimov,et al.  Mn2+-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content. , 2016, Journal of the American Chemical Society.

[57]  Y. Long,et al.  Color Manipulation of Intense Multiluminescence from CaZnOS:Mn2+ by Mn2+ Concentration Effect , 2015 .

[58]  Omar K Farha,et al.  2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications. , 2015, Journal of the American Chemical Society.

[59]  Eric T. Hoke,et al.  A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. , 2014, Angewandte Chemie.

[60]  Q. Zhang,et al.  Atomically precise doping of monomanganese ion into coreless supertetrahedral chalcogenide nanocluster inducing unusual red shift in Mn(2+) emission. , 2014, Journal of the American Chemical Society.

[61]  Delia J. Milliron,et al.  Chemistry of Doped Colloidal Nanocrystals , 2013 .

[62]  Jinju Zheng,et al.  Highly efficient and well-resolved Mn2+ ion emission in MnS/ZnS/CdS quantum dots , 2013 .

[63]  Shinobu Ohya,et al.  Magneto-optical and magnetotransport properties of heavily Mn-doped GaMnAs , 2006, cond-mat/0612055.

[64]  Stephen R. Forrest,et al.  Management of singlet and triplet excitons for efficient white organic light-emitting devices , 2006, Nature.

[65]  D. Sarma,et al.  Emission properties of manganese-doped ZnS nanocrystals. , 2005, The journal of physical chemistry. B.

[66]  Pedro A. Gonzalez Beermann,et al.  EPR spectra of Mn2+-doped ZnS quantum dots , 2004 .

[67]  D. Sarma,et al.  Influence of Quantum Confinement on the Electronic and Magnetic Properties of (Ga,Mn)As Diluted Magnetic Semiconductor , 2001, cond-mat/0111475.

[68]  A. Meijerink,et al.  Luminescence of Exchange Coupled Pairs of Transition Metal Ions , 2001 .

[69]  A. Nelson,et al.  Core-level satellites and outer core-level multiplet splitting in Mn model compounds , 1999 .

[70]  H. Ohno,et al.  Making nonmagnetic semiconductors ferromagnetic , 1998, Science.

[71]  D. Hercules,et al.  Surface spectroscopic characterization of cobalt-alumina catalysts , 1982 .

[72]  N. S. Gill,et al.  Complex halides of the transition metals. Part III. Electronic spectra and ligand field parameters of octahedral and tetrahedral halogeno-complexes of manganese(II) , 1968 .