Survey on using constraints in data mining

This paper provides an overview of the current state-of-the-art on using constraints in knowledge discovery and data mining. The use of constraints in a data mining task requires specific definition and satisfaction tools during knowledge extraction. This survey proposes three groups of studies based on classification, clustering and pattern mining, whether the constraints are on the data, the models or the measures, respectively. We consider the distinctions between hard and soft constraint satisfaction, and between the knowledge extraction phases where constraints are considered. In addition to discussing how constraints can be used in data mining, we show how constraint-based languages can be used throughout the data mining process.

[1]  Guoyin Wang,et al.  Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing , 2013, Lecture Notes in Computer Science.

[2]  Enhong Chen,et al.  Efficient strategies for tough aggregate constraint-based sequential pattern mining , 2008, Inf. Sci..

[3]  Tadeusz Morzy,et al.  SQL-Like Language for Database Mining , 1997, ADBIS.

[4]  Salvatore Orlando,et al.  ConQueSt: a Constraint-based Querying System for Exploratory Pattern Discovery , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[5]  Joong Hyuk Chang,et al.  Mining weighted sequential patterns in a sequence database with a time-interval weight , 2011, Knowl. Based Syst..

[6]  Hayato Yamana,et al.  Generalized Sequential Pattern Mining with Item Intervals , 2006, J. Comput..

[7]  Keun Ho Ryu,et al.  Discovering Important Sequential Patterns with Length-Decreasing Weighted Support Constraints , 2010, Int. J. Inf. Technol. Decis. Mak..

[8]  Luc De Raedt,et al.  A perspective on inductive databases , 2002, SKDD.

[9]  Yen-Liang Chen,et al.  Discovering recency, frequency, and monetary (RFM) sequential patterns from customers' purchasing data , 2009, Electron. Commer. Res. Appl..

[10]  Siegfried Nijssen,et al.  Mining optimal decision trees from itemset lattices , 2007, KDD '07.

[11]  Jean-François Boulicaut,et al.  Mining Frequent Sequential Patterns under Regular Expressions: A Highly Adaptive Strategy for Pushing Contraints , 2003, SDM.

[12]  Pan e Panov,et al.  Inductive Databases and Constraint-Based Data Mining , 2010 .

[13]  Ronen Feldman,et al.  The Data Mining and Knowledge Discovery Handbook , 2005 .

[14]  Tomasz Imielinski,et al.  MSQL: A Query Language for Database Mining , 1999, Data Mining and Knowledge Discovery.

[15]  Ian Davidson,et al.  When Is Constrained Clustering Beneficial, and Why? , 2006, AAAI.

[16]  Fan Wu,et al.  Considering RFM-values of frequent patterns in transactional databases , 2010, The 2nd International Conference on Software Engineering and Data Mining.

[17]  Dan Roth,et al.  Constraint Classification: A New Approach to Multiclass Classification , 2002, ALT.

[18]  Fionn Murtagh,et al.  Weighted Association Rule Mining using weighted support and significance framework , 2003, KDD '03.

[19]  P. Hansen,et al.  A survey on exact methods for minimum sum-of-squares clustering , 2008 .

[20]  Kyuseok Shim,et al.  Building Decision Trees with Constraints , 2001 .

[21]  Ho-Jin Choi,et al.  Single-pass incremental and interactive mining for weighted frequent patterns , 2012, Expert Syst. Appl..

[22]  Ian Davidson,et al.  Measuring Constraint-Set Utility for Partitional Clustering Algorithms , 2006, PKDD.

[23]  Elena Baralis,et al.  Index support for frequent itemset mining in a relational DBMS , 2005, 21st International Conference on Data Engineering (ICDE'05).

[24]  F. Bonchi,et al.  Extending the state-of-the-art of constraint-based pattern discovery , 2007, Data Knowl. Eng..

[25]  Cláudia Antunes,et al.  Generalization of Pattern-Growth Methods for Sequential Pattern Mining with Gap Constraints , 2003, MLDM.

[26]  Giuseppe Psaila,et al.  An XML-Based Database for Knowledge Discovery , 2009, Selected Readings on Database Technologies and Applications.

[27]  Wei Wang,et al.  Clustering with relative constraints , 2011, KDD.

[28]  Francesco Bonchi,et al.  Knowledge Discovery in Inductive Databases, 4th International Workshop, KDID 2005, Porto, Portugal, October 3, 2005, Revised Selected and Invited Papers , 2006, KDID.

[29]  Giuseppe Psaila,et al.  An Extension to SQL for Mining Association Rules , 1998, Data Mining and Knowledge Discovery.

[30]  Philip S. Yu,et al.  Efficient mining of weighted association rules (WAR) , 2000, KDD '00.

[31]  Anne Laurent,et al.  Mining multidimensional and multilevel sequential patterns , 2010, TKDD.

[32]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[33]  Sabrina De Capitani di Vimercati,et al.  Specification and enforcement of classification and inference constraints , 1999, Proceedings of the 1999 IEEE Symposium on Security and Privacy (Cat. No.99CB36344).

[34]  Guoyin Wang,et al.  On Different Ways of Handling Inconsistencies in Ordinal Classification with Monotonicity Constraints , 2012, IPMU.

[35]  Mohammed J. Zaki Sequence mining in categorical domains: incorporating constraints , 2000, CIKM '00.

[36]  Chetna Chand,et al.  Sequential Pattern Mining : Survey and Current Research Challenges , 2012 .

[37]  S. S. Ravi,et al.  Using instance-level constraints in agglomerative hierarchical clustering: theoretical and empirical results , 2009, Data Mining and Knowledge Discovery.

[38]  Hendrik Blockeel,et al.  An inductive database prototype based on virtual mining views , 2008, KDD.

[39]  S. S. Ravi,et al.  The complexity of non-hierarchical clustering with instance and cluster level constraints , 2007, Data Mining and Knowledge Discovery.

[40]  Jiawei Han,et al.  Divide-and-approximate: a novel constraint push strategy for iceberg cube mining , 2005, IEEE Transactions on Knowledge and Data Engineering.

[41]  ZhangJian,et al.  A Discriminative Learning Framework with Pairwise Constraints for Video Object Classification , 2006 .

[42]  Thorsten Joachims,et al.  Learning a Distance Metric from Relative Comparisons , 2003, NIPS.

[43]  T Purusothaman,et al.  UTILITY SENTIENT FREQUENT ITEM SET MINING AND ASSOCIATION RULE MINING: A LITERATURE SURVEY AND COMPARATIVE STUDY , 2009 .

[44]  Cory J. Butz,et al.  A Foundational Approach to Mining Itemset Utilities from Databases , 2004, SDM.

[45]  Arindam Banerjee,et al.  Active Semi-Supervision for Pairwise Constrained Clustering , 2004, SDM.

[46]  Bart Goethals,et al.  Sequence Mining Automata: A New Technique for Mining Frequent Sequences under Regular Expressions , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[47]  Franco Turini,et al.  Inductive database languages: requirements and examples , 2011, Knowledge and Information Systems.

[48]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[49]  Andrea Bellandi,et al.  Ontological support for Association Rule Mining , 2008 .

[50]  Roman Slowinski,et al.  Probabilistic Rough Set Approaches to Ordinal Classification with Monotonicity Constraints , 2010, IPMU.

[51]  Ingo Mierswa,et al.  YALE: rapid prototyping for complex data mining tasks , 2006, KDD '06.

[52]  Zhenguo Li,et al.  Constrained clustering via spectral regularization , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[53]  Jean-François Boulicaut,et al.  Data Mining Query Languages , 2005, Data Mining and Knowledge Discovery Handbook.

[54]  Kyuseok Shim,et al.  SPIRIT: Sequential Pattern Mining with Regular Expression Constraints , 1999, VLDB.

[55]  Deepa Paranjpe,et al.  Semi-supervised clustering with metric learning using relative comparisons , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[56]  Joachim M. Buhmann,et al.  Learning with constrained and unlabelled data , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[57]  Andreas Fischer,et al.  Pairwise support vector machines and their application to large scale problems , 2012, J. Mach. Learn. Res..

[58]  Claire Cardie,et al.  Clustering with Instance-Level Constraints , 2000, AAAI/IAAI.

[59]  Jason Eisner,et al.  Modeling Annotators: A Generative Approach to Learning from Annotator Rationales , 2008, EMNLP.

[60]  Surajit Chaudhuri,et al.  Integrating data mining with SQL databases: OLE DB for data mining , 2001, Proceedings 17th International Conference on Data Engineering.

[61]  Cláudia Antunes Pattern Mining over Star Schemas in the Onto4AR Framework , 2009, 2009 IEEE International Conference on Data Mining Workshops.

[62]  Cláudia Antunes,et al.  Constraint Relaxations for Discovering Unknown Sequential Patterns , 2004, KDID.

[63]  Saso Dzeroski,et al.  Decision trees for hierarchical multi-label classification , 2008, Machine Learning.

[64]  Joydeep Ghosh,et al.  Relationship-Based Clustering and Visualization for High-Dimensional Data Mining , 2003, INFORMS J. Comput..

[65]  Keun Ho Ryu,et al.  Approximate weighted frequent pattern mining with/without noisy environments , 2011, Knowl. Based Syst..

[66]  Ian Davidson,et al.  Constrained Clustering: Advances in Algorithms, Theory, and Applications , 2008 .

[67]  WuChieh-Ming,et al.  Generalized association rule mining using an efficient data structure , 2011 .

[68]  Sunita Sarawagi,et al.  Integrating association rule mining with relational database systems: alternatives and implications , 1998, SIGMOD '98.

[69]  Hsin-Hung Wu,et al.  A review of the application of RFM model , 2010 .

[70]  Seiji Yamada,et al.  Clustering by Learning Constraints Priorities , 2012, 2012 IEEE 12th International Conference on Data Mining.

[71]  Laks V. S. Lakshmanan,et al.  Pushing Convertible Constraints in Frequent Itemset Mining , 2004, Data Mining and Knowledge Discovery.

[72]  Dino Pedreschi,et al.  Logic-Based Knowledge Discovery in Databases , 2000, EJC.

[73]  Alfred O. Hero,et al.  Classification constrained dimensionality reduction , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[74]  Raymond J. Mooney,et al.  A probabilistic framework for semi-supervised clustering , 2004, KDD.

[75]  Indrajit Bhattacharya,et al.  Using Assignment Constraints to Avoid Empty Clusters in k-Means Clustering , 2008 .

[76]  Céline Fiot,et al.  Softening the blow of frequent sequence analysis: soft constraints and temporal accuracy , 2009, Int. J. Web Eng. Technol..

[77]  Thanaruk Theeramunkong,et al.  A new method for finding generalized frequent itemsets in generalized association rule mining , 2002, Proceedings ISCC 2002 Seventh International Symposium on Computers and Communications.

[78]  John J. Leggett,et al.  WFIM: Weighted Frequent Itemset Mining with a weight range and a minimum weight , 2005, SDM.

[79]  Jiawei Han,et al.  Meta-Rule-Guided Mining of Association Rules in Relational Databases , 1995, KDOOD/TDOOD.

[80]  Kweku-Muata Osei-Bryson,et al.  Using ontologies to facilitate post-processing of association rules by domain experts , 2011, Inf. Sci..

[81]  Ayhan Demiriz,et al.  Constrained K-Means Clustering , 2000 .

[82]  Fei Wang,et al.  Integrated KL (K-means - Laplacian) Clustering: A New Clustering Approach by Combining Attribute Data and Pairwise Relations , 2009, SDM.

[83]  Luc De Raedt,et al.  The MiningZinc Framework for Constraint-Based Itemset Mining , 2013, 2013 IEEE 13th International Conference on Data Mining Workshops.

[84]  Francesca Rossi,et al.  Semiring-based constraint satisfaction and optimization , 1997, JACM.

[85]  Bruno Crémilleux,et al.  Optimizing constraint-based mining by automatically relaxing constraints , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[86]  Bruno Crémilleux,et al.  Summarizing Contrasts by Recursive Pattern Mining , 2011, 2011 IEEE 11th International Conference on Data Mining Workshops.

[87]  Jiawei Han,et al.  Frequent pattern mining: current status and future directions , 2007, Data Mining and Knowledge Discovery.

[88]  Laks V. S. Lakshmanan,et al.  Constraint-Based Multidimensional Data Mining , 1999, Computer.

[89]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[90]  Yin-Fu Huang,et al.  Generalized association rule mining using an efficient data structure , 2011, Expert Syst. Appl..

[91]  Ramakrishnan Srikant,et al.  Mining Sequential Patterns: Generalizations and Performance Improvements , 1996, EDBT.

[92]  Jian Pei,et al.  Can we push more constraints into frequent pattern mining? , 2000, KDD '00.

[93]  Daniel Kifer,et al.  DualMiner: A Dual-Pruning Algorithm for Itemsets with Constraints , 2002, Data Mining and Knowledge Discovery.

[94]  Rakesh Agrawal,et al.  Learning spatially variant dissimilarity (SVaD) measures , 2004, KDD '04.

[95]  Joydeep Ghosh,et al.  Scalable Clustering Algorithms with Balancing Constraints , 2006, Data Mining and Knowledge Discovery.

[96]  Joydeep Ghosh,et al.  Model-based clustering with soft balancing , 2003, Third IEEE International Conference on Data Mining.

[97]  Franco Turini,et al.  XML data mining , 2010, Softw. Pract. Exp..

[98]  Heikki Mannila,et al.  A database perspective on knowledge discovery , 1996, CACM.

[99]  Fabrice Guillet,et al.  Knowledge-Based Interactive Postmining of Association Rules Using Ontologies , 2010, IEEE Transactions on Knowledge and Data Engineering.

[100]  Peter J. Stuckey,et al.  MiniZinc: Towards a Standard CP Modelling Language , 2007, CP.

[101]  Tias Guns,et al.  Constrained Clustering Using Column Generation , 2014, CPAIOR.

[102]  Andreas Nürnberger,et al.  Creating a Cluster Hierarchy under Constraints of a Partially Known Hierarchy , 2008, SDM.

[103]  Ana Fred Structural, syntactic, and statistical pattern recognition : joint IAPR international workshops, SSPR 2004 and SPR 2004, Lisbon, Portugal, August 18-20, 2004 : proceedings , 2004 .

[104]  Bruno Crémilleux,et al.  Mining constraint-based patterns using automatic relaxation , 2009, Intell. Data Anal..

[105]  Anil K. Jain,et al.  Model-based Clustering With Probabilistic Constraints , 2005, SDM.

[106]  Laks V. S. Lakshmanan,et al.  Erratum: Pushing convertible constraints in frequent itemset mining (Data Mining and Knowledge Discovery: An International Journal (May 2004) 8:3 (227-252)) , 2006 .

[107]  Philip S. Yu,et al.  Efficient Algorithms for Mining High Utility Itemsets from Transactional Databases , 2013, IEEE Transactions on Knowledge and Data Engineering.

[108]  Hendrik Blockeel,et al.  An inductive database system based on virtual mining views , 2011, Data Mining and Knowledge Discovery.

[109]  Unil Yun,et al.  A new framework for detecting weighted sequential patterns in large sequence databases , 2008, Knowl. Based Syst..

[110]  Rong Yan,et al.  On the value of pairwise constraints in classification and consistency , 2007, ICML '07.

[111]  Xin Tong,et al.  Neyman-Pearson classification under a strict constraint , 2011, COLT.

[112]  Amit Thakkar,et al.  Target Oriented Sequential Pattern Mining using Recency and Monetary Constraints , 2012 .

[113]  Jian Pei,et al.  Constraint-based sequential pattern mining: the pattern-growth methods , 2007, Journal of Intelligent Information Systems.

[114]  Atsushi Imiya,et al.  Structural, Syntactic, and Statistical Pattern Recognition , 2012, Lecture Notes in Computer Science.

[115]  Luc De Raedt,et al.  Constraint Programming for Data Mining and Machine Learning , 2010, AAAI.

[116]  Umeshwar Dayal,et al.  Multi-dimensional sequential pattern mining , 2001, CIKM '01.

[117]  Jean-François Boulicaut,et al.  Optimization of association rule mining queries , 2002, Intell. Data Anal..

[118]  Olivier Siohan,et al.  Multiple classifiers by constrained minimization , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[119]  Hendrik Blockeel,et al.  Integrating Decision Tree Learning into Inductive Databases , 2006, KDID.

[120]  Claire Cardie,et al.  Proceedings of the Eighteenth International Conference on Machine Learning, 2001, p. 577–584. Constrained K-means Clustering with Background Knowledge , 2022 .

[121]  Ian Davidson,et al.  On constrained spectral clustering and its applications , 2012, Data Mining and Knowledge Discovery.

[122]  Peter J. Stuckey,et al.  The Design of the Zinc Modelling Language , 2008, Constraints.

[123]  Shie Mannor,et al.  Online Classification with Specificity Constraints , 2010, NIPS.

[124]  Bernadette Bouchon-Meunier,et al.  An Efficient Active Constraint Selection Algorithm for Clustering , 2010, 2010 20th International Conference on Pattern Recognition.

[125]  Daniel Aloise Exact algorithms for minimum sum-of-squares clustering , 2009 .

[126]  J. R. Bult,et al.  Optimal Selection for Direct Mail , 1995 .

[127]  Andreas Nürnberger,et al.  Personalized Hierarchical Clustering , 2006, 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06).

[128]  Toon Calders,et al.  Mining Views: Database Views for Data Mining , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[129]  Ramakrishnan Srikant,et al.  Mining generalized association rules , 1995, Future Gener. Comput. Syst..

[130]  A. J. Feelders,et al.  Nearest Neighbour Classification with Monotonicity Constraints , 2008, ECML/PKDD.

[131]  H. Jaap van den Herik,et al.  The ROC isometrics approach to construct reliable classifiers , 2009, Intell. Data Anal..

[132]  Suh-Yin Lee,et al.  Efficient mining of sequential patterns with time constraints by delimited pattern growth , 2005, Knowledge and Information Systems.

[133]  Ian Davidson,et al.  Flexible constrained spectral clustering , 2010, KDD.

[134]  Chia-Wen Chang,et al.  Fast discovery of sequential patterns in large databases using effective time-indexing , 2008, Inf. Sci..

[135]  Franco Turini,et al.  KDDML: A middleware language and system for knowledge discovery in databases , 2006, Data Knowl. Eng..

[136]  Raymond J. Mooney,et al.  Integrating constraints and metric learning in semi-supervised clustering , 2004, ICML.

[137]  Laks V. S. Lakshmanan,et al.  Optimization of constrained frequent set queries with 2-variable constraints , 1999, SIGMOD '99.

[138]  Elena Baralis,et al.  Answering XML queries by means of data summaries , 2007, TOIS.

[139]  Hendrik Blockeel,et al.  SCCQL: A constraint-based clustering system , 2013 .

[140]  Andrea Bellandi,et al.  Ontology-driven Association Rules Extraction: a Case of Study , 2007, C&O:RR.

[141]  Siegfried Nijssen,et al.  Optimal constraint-based decision tree induction from itemset lattices , 2010, Data Mining and Knowledge Discovery.

[142]  Shichao Zhang,et al.  Association Rule Mining: Models and Algorithms , 2002 .

[143]  Peter A. Flach,et al.  Evaluation Measures for Multi-class Subgroup Discovery , 2009, ECML/PKDD.

[144]  Wei Wang,et al.  DMQL: A Data Mining Query Language for Relational Databases , 2007 .

[145]  Myra Spiliopoulou,et al.  Density-based semi-supervised clustering , 2010, Data Mining and Knowledge Discovery.

[146]  Jean-François Boulicaut,et al.  Optimizing subset queries: a step towards SQL-based inductive databases for itemsets , 2004, SAC '04.

[147]  Carla E. Brodley,et al.  The Constrained Weight Space SVM: Learning with Ranked Features , 2011, ICML.

[148]  Tomer Hertz,et al.  Learning Distance Functions using Equivalence Relations , 2003, ICML.

[149]  Dino Pedreschi,et al.  ExAnte: a preprocessing method for frequent-pattern mining , 2005, IEEE Intelligent Systems.

[150]  Ian Witten,et al.  Data Mining , 2000 .

[151]  Ayhan Demiriz,et al.  Clustering with Balancing Constraints , 2008 .

[152]  Simon Lucey,et al.  Nearest neighbor classifier generalization through spatially constrained filters , 2013, Pattern Recognit..

[153]  Rong Yan,et al.  A Discriminative Learning Framework with Pairwise Constraints for Video Object Classification , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[154]  Zhengdong Lu,et al.  Penalized Probabilistic Clustering , 2007, Neural Computation.

[155]  Dan Klein,et al.  From Instance-level Constraints to Space-Level Constraints: Making the Most of Prior Knowledge in Data Clustering , 2002, ICML.

[156]  Rich Caruana,et al.  Improving Classification with Pairwise Constraints: A Margin-Based Approach , 2008, ECML/PKDD.

[157]  Bernhard Rumpe,et al.  Software Engineering and Formal Methods - SEFM 2015 Collocated Workshops: ATSE, HOFM, MoKMaSD, and VERY*SCART, York, UK, September 7-8, 2015, Revised Selected Papers , 2015 .

[158]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[159]  Dimitri P. Bertsekas,et al.  Linear network optimization - algorithms and codes , 1991 .

[160]  Luc De Raedt,et al.  Itemset mining: A constraint programming perspective , 2011, Artif. Intell..

[161]  Stefan Kramer,et al.  An inductive database and query language in the relational model , 2008, EDBT '08.

[162]  Jinglu Hu,et al.  Combining binary-SVM and pairwise label constraints for multi-label classification , 2010, 2010 IEEE International Conference on Systems, Man and Cybernetics.

[163]  Carlo Zaniolo,et al.  Query Languages and Data Models for Database Sequences and Data Streams , 2004, VLDB.

[164]  Luc De Raedt,et al.  MiningZinc: A Modeling Language for Constraint-Based Mining , 2013, IJCAI.

[165]  Ramakrishnan Srikant,et al.  Mining Association Rules with Item Constraints , 1997, KDD.

[166]  S. S. Ravi,et al.  Clustering with Constraints: Feasibility Issues and the k-Means Algorithm , 2005, SDM.

[167]  Thi-Bich-Hanh Dao,et al.  Constrained Minimum Sum of Squares Clustering by Constraint Programming , 2015, CP.

[168]  Das Amrita,et al.  Mining Association Rules between Sets of Items in Large Databases , 2013 .

[169]  Stefano Bistarelli,et al.  Soft constraint based pattern mining , 2007, Data Knowl. Eng..

[170]  Franco Turini,et al.  Programming the KDD Process using XQuery , 2011, KDIR.

[171]  Mario Cannataro,et al.  Protein-to-protein interactions: Technologies, databases, and algorithms , 2010, CSUR.

[172]  Chengqi Zhang,et al.  Association Rule Mining , 2002, Lecture Notes in Computer Science.

[173]  Anil K. Jain,et al.  Clustering with Soft and Group Constraints , 2004, SSPR/SPR.

[174]  Gideon S. Mann,et al.  Learning from labeled features using generalized expectation criteria , 2008, SIGIR '08.

[175]  Jean-François Boulicaut,et al.  Closed patterns meet n-ary relations , 2009, TKDD.

[176]  Weizhong Yan,et al.  Designing classifier ensembles with constrained performance requirements , 2004, SPIE Defense + Commercial Sensing.

[177]  M. Teisseire,et al.  Efficient mining of sequential patterns with time constraints: Reducing the combinations , 2009, Expert Syst. Appl..

[178]  Howard J. Hamilton,et al.  A density-based spatial clustering for physical constraints , 2011, Journal of Intelligent Information Systems.

[179]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[180]  Luc De Raedt,et al.  k-Pattern Set Mining under Constraints , 2013, IEEE Transactions on Knowledge and Data Engineering.

[181]  Günther Palm,et al.  On the Effects of Constraints in Semi-supervised Hierarchical Clustering , 2006, ANNPR.

[182]  Johannes Fürnkranz,et al.  Multi-Label Classification with Label Constraints , 2008 .

[183]  S. S. Ravi,et al.  Identifying and Generating Easy Sets of Constraints for Clustering , 2006, AAAI.

[184]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[185]  Xin Tong,et al.  Neyman-Pearson Classification, Convexity and Stochastic Constraints , 2011, J. Mach. Learn. Res..

[186]  Keun Ho Ryu,et al.  An efficient mining algorithm for maximal weighted frequent patterns in transactional databases , 2012, Knowl. Based Syst..

[187]  Olegas Vasilecas,et al.  Advances in Databases and Information Systems (ADBIS) , 2002, SIGMOD Rec..

[188]  Jeong Hee Hwang,et al.  Ontology Based Service Frequent Pattern Mining , 2014 .

[189]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[190]  Nizar R. Mabroukeh,et al.  A taxonomy of sequential pattern mining algorithms , 2010, CSUR.

[191]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[192]  Luca Cagliero,et al.  Generalized association rule mining with constraints , 2012, Inf. Sci..

[193]  Valerio Grossi,et al.  XQuake as a Constraint-Based Mining Language , 2012 .

[194]  S. S. Ravi,et al.  Agglomerative Hierarchical Clustering with Constraints: Theoretical and Empirical Results , 2005, PKDD.

[195]  Ya-Han Hu,et al.  Mining Sequential Patterns With Consideration To Recency, Frequency, And Monetary , 2011, PACIS.

[196]  Dorian Pyle,et al.  Data Preparation for Data Mining , 1999 .

[197]  Joydeep Ghosh,et al.  Scalable, Balanced Model-based Clustering , 2003, SDM.

[198]  Ruggero G. Pensa,et al.  Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data , 2005, KDID.

[199]  Jean-François Boulicaut,et al.  Constraint-based Data Mining , 2005, Data Mining and Knowledge Discovery Handbook.

[200]  Fadila Bentayeb,et al.  Decision Tree Modeling with Relational Views , 2002, ISMIS.

[201]  Jiawei Han,et al.  Mining Multiple-Level Association Rules in Large Databases , 1999, IEEE Trans. Knowl. Data Eng..

[202]  Thi-Bich-Hanh Dao,et al.  A Declarative Framework for Constrained Clustering , 2013, ECML/PKDD.

[203]  Chin-Chen Chang,et al.  Isolated items discarding strategy for discovering high utility itemsets , 2008, Data Knowl. Eng..

[204]  Yuejin Zhang,et al.  A Survey of Interestingness Measures for Association Rules , 2009, 2009 International Conference on Business Intelligence and Financial Engineering.

[205]  Franco Turini,et al.  Clustering Formulation Using Constraint Optimization , 2015, SEFM Workshops.

[206]  James Saunderson,et al.  Spectral clustering with inconsistent advice , 2008, ICML '08.

[207]  Guoyin Wang,et al.  Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing , 2003, Lecture Notes in Computer Science.

[208]  Carson Kai-Sang Leung,et al.  Mining uncertain data for frequent itemsets that satisfy aggregate constraints , 2010, SAC '10.

[209]  Miguel Á. Carreira-Perpiñán,et al.  Constrained spectral clustering through affinity propagation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[210]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[211]  Ian Davidson,et al.  Incorporating SAT solvers into hierarchical clustering algorithms: an efficient and flexible approach , 2011, KDD.

[212]  Jean-François Boulicaut,et al.  Closed and noise-tolerant patterns in n-ary relations , 2012, Data Mining and Knowledge Discovery.