A novel model on time-resolved photoluminescence measurements of polar InGaN/GaN multi-quantum-well structures

Based on carrier rate equation, a new model is proposed to explain the non-exponential nature of time-resolved photoluminescence (TRPL) decay curves in the polar InGaN/GaN multi-quantum-well structures. From the study of TRPL curves at different temperatures, it is found that both radiative and non-radiative recombination coefficients vary from low temperature to room temperature. The variation of the coefficients is compatible with the carrier density of states distribution as well as the carrier localization process. These results suggest that there is a novel method to calculate the internal quantum efficiency, which is a complement to the traditional one based on temperature dependent photoluminescence measurement.

[1]  Dawson,et al.  Linewidth dependence of radiative exciton lifetimes in quantum wells. , 1987, Physical review letters.

[2]  Isamu Akasaki,et al.  Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells , 1997 .

[3]  Kazumi Wada,et al.  Spatially resolved cathodoluminescence spectra of InGaN quantum wells , 1997 .

[4]  Umesh K. Mishra,et al.  “S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells , 1998 .

[5]  W. Liu,et al.  An analysis of temperature dependent photoluminescence line shapes in InGaN , 1998 .

[6]  Fritz Henneberger,et al.  Polarization charge screening and indium surface segregation in (In,Ga)N/GaN single and multiple quantum wells , 2000 .

[7]  Tao Wang,et al.  Photoluminescence studies of InGaN/GaN multi-quantum wells , 2000 .

[8]  Takashi Mukai,et al.  Localized quantum well excitons in InGaN single-quantum-well amber light-emitting diodes , 2000 .

[9]  Tao Wang,et al.  Influence of the quantum-well thickness on the radiative recombination of InGaN/GaN quantum well structures , 2000 .

[10]  F. Bernardini,et al.  Accurate calculation of polarization-related quantities in semiconductors , 2001 .

[11]  P. Lefebvre,et al.  Donor-acceptor-like behavior of electron-hole pair recombinations in low-dimensional (Ga,In)N/GaN systems , 2003 .

[12]  A. Forchel,et al.  Probing individual localization centers in an InGaN/GaN quantum well. , 2004, Physical review letters.

[13]  C. Humphreys,et al.  Optical and microstructural studies of InGaN∕GaN single-quantum-well structures , 2005 .

[14]  H. Gotoh,et al.  Blue-purplish InGaN quantum wells with shallow depth of exciton localization , 2005 .

[15]  Q. Li,et al.  A model for steady-state luminescence of localized-state ensemble , 2004, cond-mat/0411128.

[16]  Phil Dawson,et al.  Determination of relative internal quantum efficiency in InGaN∕GaN quantum wells , 2005 .

[17]  D. C. Johnston Stretched exponential relaxation arising from a continuous sum of exponential decays , 2006 .

[18]  H. Ryu,et al.  Evaluation of radiative efficiency in InGaN blue-violet laser-diode structures using electroluminescence characteristics , 2006 .

[19]  M. H. Crawford,et al.  Internal quantum efficiency and non-radiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[20]  Han-Youl Ryu,et al.  Rate equation analysis of efficiency droop in InGaN light-emitting diodes , 2009 .

[21]  K. Delaney,et al.  Auger recombination rates in nitrides from first principles , 2009, 0904.3559.

[22]  M. Goano,et al.  A numerical study of Auger recombination in bulk InGaN , 2010 .

[23]  Luo Yi,et al.  Effects of InGaN barriers with low indium content on internal quantum efficiency of blue InGaN multiple quantum wells , 2010 .

[24]  Lai Wang,et al.  Understanding efficiency droop effect in InGaN/GaN multiple-quantum-well blue light-emitting diodes with different degree of carrier localization , 2010 .

[25]  Lai Wang,et al.  Study on internal quantum efficiency of blue InGaN multiple-quantum-well with an InGaN underneath layer , 2010 .

[26]  K. Delaney,et al.  Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes , 2011 .

[27]  Lai Wang,et al.  An improved carrier rate model to evaluate internal quantum efficiency and analyze efficiency droop origin of InGaN based light-emitting diodes , 2012 .

[28]  Enrico Bellotti,et al.  Numerical analysis of indirect Auger transitions in InGaN , 2012 .

[29]  C. Humphreys,et al.  High excitation carrier density recombination dynamics of InGaN/GaN quantum well structures: Possible relevance to efficiency droop , 2013 .

[30]  Eoin P. O'Reilly,et al.  Atomistic analysis of the impact of alloy and well-width fluctuations on the electronic and optical properties of InGaN/GaN quantum wells , 2015, 1501.05482.

[31]  Yoichi Kawakami,et al.  Emission mechanisms in Al-rich AlGaN/AlN quantum wells assessed by excitation power dependent photoluminescence spectroscopy , 2015 .

[32]  Bernard Gil,et al.  Internal quantum efficiency in yellow-amber light emitting AlGaN-InGaN-GaN heterostructures , 2015 .

[33]  A. Shields,et al.  Radiative recombination mechanisms in polar and non-polar InGaN/GaN quantum well LED structures , 2016 .

[34]  Tao Wang,et al.  Stokes shift in semi-polar ( 112¯2) InGaN/GaN multiple quantum wells , 2016 .

[35]  Zhijian Lu,et al.  Analysis of low efficiency droop of semipolar InGaN quantum well light-emitting diodes by modified rate equation with weak phase-space filling effect , 2016 .

[36]  S. Denbaars,et al.  Study of Low-Efficiency Droop in Semipolar ( $20\bar{2}\bar{1}$) InGaN Light-Emitting Diodes by Time-Resolved Photoluminescence , 2016, Journal of Display Technology.

[37]  C. Humphreys,et al.  The nature of carrier localisation in polar and nonpolar InGaN/GaN quantum wells , 2016 .