Chromothripsis and Kataegis Induced by Telomere Crisis

[1]  Joachim Weischenfeldt,et al.  A cell-based model system links chromothripsis with hyperploidy , 2015, Molecular systems biology.

[2]  G. Getz,et al.  An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers , 2015, Nature Genetics.

[3]  M. Hetzer,et al.  Linking Micronuclei to Chromosome Fragmentation , 2015, Cell.

[4]  Matthew Meyerson,et al.  CHROMOTHRIPSIS FROM DNA DAMAGE IN MICRONUCLEI , 2015, Nature.

[5]  Martin A. Nowak,et al.  A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity , 2015, Nature.

[6]  Y. Crow,et al.  Human Disease Phenotypes Associated With Mutations in TREX1 , 2015, Journal of Clinical Immunology.

[7]  R. Hills,et al.  Telomere fusion threshold identifies a poor prognostic subset of breast cancer patients , 2015, Molecular oncology.

[8]  J. Kench,et al.  Whole genomes redefine the mutational landscape of pancreatic cancer , 2015, Nature.

[9]  K. Dubrana,et al.  Cytokinesis breaks dicentric chromosomes preferentially at pericentromeric regions and telomere fusions , 2015, Genes & development.

[10]  Dmitry A. Gordenin,et al.  Hypermutation in human cancer genomes: footprints and mechanisms , 2014, Nature Reviews Cancer.

[11]  Owen J. Marshall,et al.  The architecture and evolution of cancer neochromosomes. , 2014, Cancer cell.

[12]  Peter J. Campbell,et al.  Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis , 2014, Nature Communications.

[13]  C. Fegan,et al.  Telomere dysfunction accurately predicts clinical outcome in chronic lymphocytic leukaemia, even in patients with early stage disease , 2014, British journal of haematology.

[14]  A. Quinlan BEDTools: The Swiss‐Army Tool for Genome Feature Analysis , 2014, Current protocols in bioinformatics.

[15]  Peter J. Campbell,et al.  Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia , 2014, Nature.

[16]  Geraint T. Williams,et al.  Extensive telomere erosion in the initiation of colorectal adenomas and its association with chromosomal instability. , 2013, Journal of the National Cancer Institute.

[17]  N. A. Temiz,et al.  Evidence for APOBEC3B mutagenesis in multiple human cancers , 2013, Nature Genetics.

[18]  Steven A. Roberts,et al.  An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers , 2013, Nature Genetics.

[19]  T. Deerinck,et al.  Catastrophic Nuclear Envelope Collapse in Cancer Cell Micronuclei , 2013, Cell.

[20]  L. Aaltonen,et al.  Characterization of uterine leiomyomas by whole-genome sequencing. , 2013, The New England journal of medicine.

[21]  E. Cuppen,et al.  Chromothripsis in congenital disorders and cancer: similarities and differences. , 2013, Current opinion in cell biology.

[22]  J. Korbel,et al.  Criteria for Inference of Chromothripsis in Cancer Genomes , 2013, Cell.

[23]  Jason B. Nikas,et al.  APOBEC3B is an enzymatic source of mutation in breast cancer , 2013, Nature.

[24]  R. Weinberg,et al.  Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. , 2012, Seminars in cancer biology.

[25]  Stephen P. Jackson,et al.  Chromothripsis and cancer: causes and consequences of chromosome shattering , 2012, Nature Reviews Cancer.

[26]  B. Sullivan,et al.  Dicentric chromosomes: unique models to study centromere function and inactivation , 2012, Chromosome Research.

[27]  T. Davoli,et al.  Telomere-driven tetraploidization occurs in human cells undergoing crisis and promotes transformation of mouse cells. , 2012, Cancer cell.

[28]  A. Børresen-Dale,et al.  Mutational Processes Molding the Genomes of 21 Breast Cancers , 2012, Cell.

[29]  Martin A. M. Reijns,et al.  Enzymatic Removal of Ribonucleotides from DNA Is Essential for Mammalian Genome Integrity and Development , 2012, Cell.

[30]  Steven A. Roberts,et al.  Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. , 2012, Molecular cell.

[31]  A. Børresen-Dale,et al.  The Life History of 21 Breast Cancers , 2012, Cell.

[32]  David T. W. Jones,et al.  Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations , 2012, Cell.

[33]  M. Hetzer,et al.  Transient nuclear envelope rupturing during interphase in human cancer cells , 2012, Nucleus.

[34]  David Frescas,et al.  Telomere protection by TPP1/POT1 requires tethering to TIN2. , 2011, Molecular cell.

[35]  N. Carter,et al.  Massive Genomic Rearrangement Acquired in a Single Catastrophic Event during Cancer Development , 2011, Cell.

[36]  Andrew Menzies,et al.  The patterns and dynamics of genomic instability in metastatic pancreatic cancer , 2010, Nature.

[37]  C. Fegan,et al.  Telomere dysfunction and fusion during the progression of chronic lymphocytic leukemia: evidence for a telomere crisis. , 2010, Blood.

[38]  Andrea Musacchio,et al.  Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine , 2010, The Journal of cell biology.

[39]  T. Lange,et al.  Persistent Telomere Damage Induces Bypass of Mitosis and Tetraploidy , 2010, Cell.

[40]  Richard Durbin,et al.  Fast and accurate long-read alignment with Burrows–Wheeler transform , 2010, Bioinform..

[41]  D. Baird,et al.  Fusion of short telomeres in human cells is characterized by extensive deletion and microhomology, and can result in complex rearrangements , 2009, Nucleic acids research.

[42]  Joost van Mameren,et al.  Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging , 2009, Proceedings of the National Academy of Sciences.

[43]  J. van Noort,et al.  10 years of tension on chromatin: results from single molecule force spectroscopy. , 2009, Current pharmaceutical biotechnology.

[44]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[45]  Stephan Saalfeld,et al.  Globally optimal stitching of tiled 3D microscopic image acquisitions , 2009, Bioinform..

[46]  T. Hollis,et al.  The TREX1 Double-stranded DNA Degradation Activity Is Defective in Dominant Mutations Associated with Autoimmune Disease* , 2008, Journal of Biological Chemistry.

[47]  L. Wessels,et al.  Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions , 2008, Nature.

[48]  Antony V. Cox,et al.  Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing , 2008, Nature Genetics.

[49]  M. Haughton,et al.  The nature of telomere fusion and a definition of the critical telomere length in human cells. , 2007, Genes & development.

[50]  Andrew Menzies,et al.  Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. , 2007, Genome research.

[51]  J. Lieberman,et al.  The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme A-mediated cell death. , 2006, Molecular cell.

[52]  H. Riethman,et al.  Mapping and initial analysis of human subtelomeric sequence assemblies. , 2003, Genome research.

[53]  T. Lange,et al.  DNA Damage Foci at Dysfunctional Telomeres , 2003, Current Biology.

[54]  Timothy J Mitchison,et al.  Dissecting Temporal and Spatial Control of Cytokinesis with a Myosin II Inhibitor , 2003, Science.

[55]  R. Tsien,et al.  Partitioning of Lipid-Modified Monomeric GFPs into Membrane Microdomains of Live Cells , 2002, Science.

[56]  D. Gisselsson,et al.  Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Jan Greve,et al.  Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers , 2001, Nature Structural Biology.

[58]  Lynda Chin,et al.  Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice , 2000, Nature.

[59]  Matthias Mann,et al.  Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres , 2000, Nature Genetics.

[60]  D. Broccoli,et al.  p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. , 1999, Science.

[61]  Bas van Steensel,et al.  TRF2 Protects Human Telomeres from End-to-End Fusions , 1998, Cell.

[62]  A. Libchaber,et al.  Elasticity and Structure of Eukaryote Chromosomes Studied by Micromanipulation and Micropipette Aspiration , 1997, The Journal of cell biology.

[63]  W. Brown,et al.  Structure and polymorphism of human telomere-associated DNA , 1990, Cell.

[64]  K. Bloom,et al.  Acquisition and processing of a conditional dicentric chromosome in Saccharomyces cerevisiae , 1989, Molecular and cellular biology.

[65]  J. Haber,et al.  Meiotic and mitotic behavior of dicentric chromosomes in Saccharomyces cerevisiae. , 1984, Genetics.

[66]  B. Mcclintock,et al.  The Stability of Broken Ends of Chromosomes in Zea Mays. , 1941, Genetics.

[67]  B. Mcclintock The Production of Homozygous Deficient Tissues with Mutant Characteristics by Means of the Aberrant Mitotic Behavior of Ring-Shaped Chromosomes. , 1938, Genetics.

[68]  R. DePinho,et al.  Telomeres and telomerase in cancer. , 2010, Carcinogenesis.

[69]  Heng Li,et al.  BIOINFORMATICS ORIGINAL PAPER , 2022 .