Intrinsic Observer-Based Stabilization for Simple Mechanical Systems on Lie Groups
暂无分享,去创建一个
Jordan M. Berg | D. H. Sanjeeva Maithripala | Wijesuriya P. Dayawansa | D. H. S. Maithripala | W. Dayawansa | J. Berg
[1] Jordan M. Berg,et al. Almost-global tracking of simple mechanical systems on a general class of Lie Groups , 2006, IEEE Transactions on Automatic Control.
[2] Peter E. Crouch,et al. Optimal control, optimization, and analytical mechanics , 1998 .
[3] Pierre Rouchon,et al. An Intrinsic Observer for a Class of , 2003 .
[4] Frank L. Lewis,et al. Optimal Control , 1986 .
[5] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[6] V. Jurdjevic. Optimal control, geometry, and mechanics , 1998 .
[7] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[8] Romeo Ortega,et al. Putting energy back in control , 2001 .
[9] M. Akella. Rigid body attitude tracking without angular velocity feedback , 2000 .
[10] Richard M. Murray,et al. Configuration Controllability of Simple Mechanical Control Systems , 1997, SIAM Rev..
[11] Maruthi R. Akella,et al. Rigid body attitude control with inclinometer and low-cost gyro measurements , 2003, Syst. Control. Lett..
[12] Vijay Kumar,et al. On the generation of smooth three-dimensional rigid body motions , 1998, IEEE Trans. Robotics Autom..
[13] Arjan van der Schaft,et al. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems , 2002, Autom..
[14] Miguel C. Muñoz-Lecanda,et al. Dissipative Control of Mechanical Systems: A Geometric Approach , 2001, SIAM J. Control. Optim..
[15] S. Salcudean. A globally convergent angular velocity observer for rigid body motion , 1991 .
[16] Naomi Ehrich Leonard,et al. Controllability and motion algorithms for underactuated Lagrangian systems on Lie groups , 2000, IEEE Trans. Autom. Control..
[17] Xiaoming Hu,et al. Nonlinear state estimation for rigid-body motion with low-pass sensors , 2000 .
[18] Naomi Ehrich Leonard,et al. Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem , 2000, IEEE Trans. Autom. Control..
[19] Richard M. Murray,et al. Tracking for fully actuated mechanical systems: a geometric framework , 1999, Autom..
[20] Pierre Rouchon,et al. An intrinsic observer for a class of Lagrangian systems , 2003, IEEE Trans. Autom. Control..
[21] Naomi Ehrich Leonard,et al. The equivalence of controlled lagrangian and controlled hamiltonian systems , 2002 .
[22] D. H. S. Maithripala,et al. Control of an Electrostatic MEMS Using Static and Dynamic Output Feedback , 2005 .
[23] J. Marsden,et al. Stabilization of rigid body dynamicsby the Energy-Casimir method , 1990 .
[24] Jordan M. Berg,et al. Nano-precision control of micromirrors using output feedback , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).
[25] D. H. S. Maithripala,et al. An intrinsic observer for a class of simple mechanical systems on a Lie group , 2004, Proceedings of the 2004 American Control Conference.
[26] Jerrold E. Marsden,et al. Foundations of Mechanics, Second Edition , 1987 .
[27] A. Isidori,et al. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems , 1991 .
[28] A. Schaft. L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .
[29] D. H. S. Maithripala,et al. Almost-global tracking of simple mechanical systems on a general class of Lie Groups , 2005, IEEE Transactions on Automatic Control.
[30] G. Smirnov,et al. Attitude determination and stabilization of a spherically symmetric rigid body in a magnetic field , 2001 .
[31] T. Frankel. The geometry of physics : an introduction , 2004 .
[32] A. D. Lewis,et al. Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.
[33] Alessandro Astolfi,et al. Robust output feedback stabilization of the angular velocity of a rigid body , 1999 .
[34] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[35] Naomi Ehrich Leonard,et al. Symmetries, Conservation Laws, and Control , 2002 .
[36] A. D. Lewis,et al. Geometric control of mechanical systems : modeling, analysis, and design for simple mechanical control systems , 2005 .
[37] David Elata,et al. Analytical approach and numerical /spl alpha/-lines method for pull-in hyper-surface extraction of electrostatic actuators with multiple uncoupled voltage sources , 2003 .
[38] K. Lynch. Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.
[39] J. Baillieul,et al. The geometry of controlled mechanical systems , 1998 .
[40] T. Frankel. The Geometry of Physics , 1997 .
[41] Naomi Ehrich Leonard,et al. Moving mass control for underwater vehicles , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).
[42] J. Jost. Riemannian geometry and geometric analysis , 1995 .
[43] Jordan M. Berg,et al. Control of an Electrostatic Microelectromechanical System Using Static and Dynamic Output Feedback , 2005 .
[44] D. Koditschek. The Application of Total Energy as a Lyapunov Function for Mechanical Control Systems , 1989 .
[45] Naomi Ehrich Leonard,et al. Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping , 2001, IEEE Trans. Autom. Control..
[46] P J Fox,et al. THE FOUNDATIONS OF MECHANICS. , 1918, Science.