Intrinsic Observer-Based Stabilization for Simple Mechanical Systems on Lie Groups

This paper presents a dynamic observer for a class of simple mechanical systems on Lie groups. This observer provides velocity estimates based on configuration measurements. The observer is \textit{intrinsic}, so its performance does not depend on the choice of coordinates, and it is \textit{coordinate free}, in the sense that the equations may be written explicitly without specifying coordinates for the configuration space. Our main result is obtained by specializing a previous result of Aghannan and Rouchon concerning velocity estimation of simple mechanical systems on Riemannian manifolds to such systems on Lie groups. This specialization is nonobvious and extremely powerful. Further we extend the original result to include velocity-dependent external forces. This estimator, combined with a coordinate-free formulation of passivity-based state-feedback control, allows the construction of a coordinate-free, intrinsic dynamic output feedback compensator. This is, to our knowledge, the first time such a result has been reported. Explicit expressions are computed for the Lie groups $SO(3)$ and $SE(3)$, allowing easy specialization to practical problems of rigid body motion. The theory is illustrated via application to the axisymmetric top and to a six-degrees-of-freedom microelectromechanical system.

[1]  Jordan M. Berg,et al.  Almost-global tracking of simple mechanical systems on a general class of Lie Groups , 2006, IEEE Transactions on Automatic Control.

[2]  Peter E. Crouch,et al.  Optimal control, optimization, and analytical mechanics , 1998 .

[3]  Pierre Rouchon,et al.  An Intrinsic Observer for a Class of , 2003 .

[4]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  V. Jurdjevic Optimal control, geometry, and mechanics , 1998 .

[7]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[8]  Romeo Ortega,et al.  Putting energy back in control , 2001 .

[9]  M. Akella Rigid body attitude tracking without angular velocity feedback , 2000 .

[10]  Richard M. Murray,et al.  Configuration Controllability of Simple Mechanical Control Systems , 1997, SIAM Rev..

[11]  Maruthi R. Akella,et al.  Rigid body attitude control with inclinometer and low-cost gyro measurements , 2003, Syst. Control. Lett..

[12]  Vijay Kumar,et al.  On the generation of smooth three-dimensional rigid body motions , 1998, IEEE Trans. Robotics Autom..

[13]  Arjan van der Schaft,et al.  Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems , 2002, Autom..

[14]  Miguel C. Muñoz-Lecanda,et al.  Dissipative Control of Mechanical Systems: A Geometric Approach , 2001, SIAM J. Control. Optim..

[15]  S. Salcudean A globally convergent angular velocity observer for rigid body motion , 1991 .

[16]  Naomi Ehrich Leonard,et al.  Controllability and motion algorithms for underactuated Lagrangian systems on Lie groups , 2000, IEEE Trans. Autom. Control..

[17]  Xiaoming Hu,et al.  Nonlinear state estimation for rigid-body motion with low-pass sensors , 2000 .

[18]  Naomi Ehrich Leonard,et al.  Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem , 2000, IEEE Trans. Autom. Control..

[19]  Richard M. Murray,et al.  Tracking for fully actuated mechanical systems: a geometric framework , 1999, Autom..

[20]  Pierre Rouchon,et al.  An intrinsic observer for a class of Lagrangian systems , 2003, IEEE Trans. Autom. Control..

[21]  Naomi Ehrich Leonard,et al.  The equivalence of controlled lagrangian and controlled hamiltonian systems , 2002 .

[22]  D. H. S. Maithripala,et al.  Control of an Electrostatic MEMS Using Static and Dynamic Output Feedback , 2005 .

[23]  J. Marsden,et al.  Stabilization of rigid body dynamicsby the Energy-Casimir method , 1990 .

[24]  Jordan M. Berg,et al.  Nano-precision control of micromirrors using output feedback , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[25]  D. H. S. Maithripala,et al.  An intrinsic observer for a class of simple mechanical systems on a Lie group , 2004, Proceedings of the 2004 American Control Conference.

[26]  Jerrold E. Marsden,et al.  Foundations of Mechanics, Second Edition , 1987 .

[27]  A. Isidori,et al.  Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems , 1991 .

[28]  A. Schaft L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .

[29]  D. H. S. Maithripala,et al.  Almost-global tracking of simple mechanical systems on a general class of Lie Groups , 2005, IEEE Transactions on Automatic Control.

[30]  G. Smirnov,et al.  Attitude determination and stabilization of a spherically symmetric rigid body in a magnetic field , 2001 .

[31]  T. Frankel The geometry of physics : an introduction , 2004 .

[32]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[33]  Alessandro Astolfi,et al.  Robust output feedback stabilization of the angular velocity of a rigid body , 1999 .

[34]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[35]  Naomi Ehrich Leonard,et al.  Symmetries, Conservation Laws, and Control , 2002 .

[36]  A. D. Lewis,et al.  Geometric control of mechanical systems : modeling, analysis, and design for simple mechanical control systems , 2005 .

[37]  David Elata,et al.  Analytical approach and numerical /spl alpha/-lines method for pull-in hyper-surface extraction of electrostatic actuators with multiple uncoupled voltage sources , 2003 .

[38]  K. Lynch Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[39]  J. Baillieul,et al.  The geometry of controlled mechanical systems , 1998 .

[40]  T. Frankel The Geometry of Physics , 1997 .

[41]  Naomi Ehrich Leonard,et al.  Moving mass control for underwater vehicles , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[42]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[43]  Jordan M. Berg,et al.  Control of an Electrostatic Microelectromechanical System Using Static and Dynamic Output Feedback , 2005 .

[44]  D. Koditschek The Application of Total Energy as a Lyapunov Function for Mechanical Control Systems , 1989 .

[45]  Naomi Ehrich Leonard,et al.  Controlled Lagrangians and the stabilization of mechanical systems. II. Potential shaping , 2001, IEEE Trans. Autom. Control..

[46]  P J Fox,et al.  THE FOUNDATIONS OF MECHANICS. , 1918, Science.