Quadratic Klein-Gordon equations with a potential in one dimension

Abstract This paper proposes a fairly general new point of view on the question of asymptotic stability of (topological) solitons. Our approach is based on the use of the distorted Fourier transform at the nonlinear level; it does not rely only on Strichartz or virial estimates and is therefore able to treat low-power nonlinearities (hence also nonlocalised solitons) and capture the global (in space and time) behaviour of solutions. More specifically, we consider quadratic nonlinear Klein-Gordon equations with a regular and decaying potential in one space dimension. Additional assumptions are made so that the distorted Fourier transform of the solution vanishes at zero frequency. Assuming also that the associated Schrödinger operator has no negative eigenvalues, we obtain global-in-time bounds, including sharp pointwise decay and modified asymptotics, for small solutions. These results have some direct applications to the asymptotic stability of (topological) solitons, as well as several other potential applications to a variety of related problems. For instance, we obtain full asymptotic stability of kinks with respect to odd perturbations for the double sine-Gordon problem (in an appropriate range of the deformation parameter). For the $\phi ^4$ problem, we obtain asymptotic stability for small odd solutions, provided the nonlinearity is projected on the continuous spectrum. Our results also go beyond these examples since our framework allows for the presence of a fully coherent phenomenon (a space-time resonance) at the level of quadratic interactions, which creates a degeneracy in distorted Fourier space. We devise a suitable framework that incorporates this and use multilinear harmonic analysis in the distorted setting to control all nonlinear interactions.

[1]  N. Masmoudi,et al.  Long-Time Dispersive Estimates for Perturbations of a Kink Solution of One-Dimensional Cubic Wave Equations , 2020, Memoirs of the European Mathematical Society.

[2]  M. Kowalczyk,et al.  Dynamics of strongly interacting kink-antikink pairs for scalar fields on a line , 2019, Duke Mathematical Journal.

[3]  Y. Martel,et al.  A Sufficient Condition for Asymptotic Stability of Kinks in General (1+1)-Scalar Field Models , 2020, Annals of PDE.

[4]  Hans Lindblad,et al.  Asymptotics for 1D Klein-Gordon Equations with Variable Coefficient Quadratic Nonlinearities , 2020, Archive for Rational Mechanics and Analysis.

[5]  Claudio Munoz,et al.  Soliton dynamics for the 1D NLKG equation with symmetry and in the absence of internal modes , 2019, Journal of the European Mathematical Society.

[6]  F. Pusateri,et al.  Bilinear estimates in the presence of a large potential and a critical NLS in 3d , 2020, 2003.00312.

[7]  Jason Murphy,et al.  Modified Scattering for the One-Dimensional Cubic NLS with a Repulsive Delta Potential , 2019 .

[8]  Hans Lindblad,et al.  Decay and asymptotics for the 1D Klein-Gordon equation with variable coefficient cubic nonlinearities. , 2019, 1907.09922.

[9]  Tristan L'eger 3D quadratic NLS equation with electromagnetic perturbations , 2019, 1903.09838.

[10]  Jonathan Impett Resonances , 2018, Routledge Handbook to Luigi Nono and Musical Thought.

[11]  F. Rousset,et al.  The nonlinear Schrödinger equation with a potential , 2017, Annales de l'Institut Henri Poincaré C, Analyse non linéaire.

[12]  Tristan L'eger Global existence and scattering for quadratic NLS with potential in 3D , 2018 .

[13]  A. Ionescu,et al.  Global Regularity for 2d Water Waves with Surface Tension , 2014, Memoirs of the American Mathematical Society.

[14]  F. Rousset,et al.  The Nonlinear Schrodinger equation with a potential in dimension 1 , 2017, 1704.00061.

[15]  Yu Deng,et al.  The Euler–Maxwell System for Electrons: Global Solutions in 2D , 2016, 1605.05340.

[16]  Jean-Marc Delort Modified scattering for odd solutions of cubic nonlinear Schrödinger equations with potential in dimension one , 2016 .

[17]  A. Ionescu,et al.  Global Analysis of a Model for Capillary Water Waves in Two Dimensions , 2016 .

[18]  Y. Martel,et al.  Nonexistence of small, odd breathers for a class of nonlinear wave equations , 2016, 1607.06421.

[19]  I. Naumkin Sharp asymptotic behavior of solutions for cubic nonlinear Schrödinger equations with a potential , 2016 .

[20]  J. Szeftel,et al.  Codimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski space , 2013, 1310.5606.

[21]  Claudio Munoz,et al.  Kink dynamics in the $\phi^4$ model: asymptotic stability for odd perturbations in the energy space , 2015, 1506.07420.

[22]  Pierre Germain,et al.  Asymptotic stability of solitons for mKdV , 2015, 1503.09143.

[23]  A. Ionescu,et al.  A NOTE ON THE ASYMPTOTIC BEHAVIOR OF 2 D GRAVITY WATER WAVES , 2014 .

[24]  Hans Lindblad,et al.  Scattering for the Klein-Gordon equation with quadratic and variable coefficient cubic nonlinearities , 2013, 1307.5882.

[25]  Jacob Sterbenz Dispersive decay for the 1D Klein-Gordon equation with variable coefficient nonlinearities , 2013, 1307.4808.

[26]  J. Krieger,et al.  A vector field method on the distorted Fourier side and decay for wave equations with potentials , 2013, 1307.2392.

[27]  Fabio Pusateri,et al.  Global solutions for the gravity water waves system in 2d , 2013, Inventiones mathematicae.

[28]  P. Germain,et al.  Nonlinear Resonances with a Potential: Multilinear Estimates and an Application to NLS , 2013, 1303.4354.

[29]  Y. Shnir Topological solitons , 2012, Physics of Particles and Nuclei Letters.

[30]  N. Hayashi,et al.  Quadratic nonlinear Klein-Gordon equation in one dimension , 2012 .

[31]  A. Ionescu,et al.  Nonlinear fractional Schrödinger equations in one dimension , 2012, 1209.4943.

[32]  A. Komech,et al.  Dispersion Decay and Scattering Theory: Komech/Dispersion , 2012 .

[33]  T. Romanczukiewicz,et al.  Kink-antikink collisions in the φ⁶ model. , 2011, Physical review letters.

[34]  J. Kato,et al.  A new proof of long-range scattering for critical nonlinear Schrödinger equations , 2010, Differential and Integral Equations.

[35]  K. Nakanishi,et al.  Global dynamics above the ground state energy for the one-dimensional NLKG equation , 2010, 1011.1776.

[36]  A. Komech,et al.  On Asymptotic Stability of Moving Kink for Relativistic Ginzburg-Landau Equation , 2009, 0910.5538.

[37]  A. Komech,et al.  On Asymptotic Stability of Kink for Relativistic Ginzburg–Landau Equations , 2009, 0910.5539.

[38]  P. Germain,et al.  Global solutions for the gravity water waves equation in dimension 3 , 2009, 0906.5343.

[39]  K. Nakanishi,et al.  Scattering theory for the Gross-Pitaevskii equation in three dimensions , 2008, 0803.3208.

[40]  Terence Tao,et al.  Why are solitons stable , 2008, 0802.2408.

[41]  S. Cuccagna On asymptotic stability in 3D of kinks for the ⁴ model , 2007, 0801.2678.

[42]  Shu-Ming Chang,et al.  Spectra of Linearized Operators for NLS Solitary Waves , 2006, SIAM J. Math. Anal..

[43]  Jean Bourgain,et al.  Mathematical aspects of nonlinear dispersive equations , 2007 .

[44]  A. Soffer Soliton dynamics and scattering , 2006 .

[45]  W. Schlag Spectral theory and nonlinear partial differential equations: A survey , 2006 .

[46]  Michel Peyrard,et al.  Physics of Solitons , 2006 .

[47]  Wilhelm Schlag,et al.  Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension , 2006 .

[48]  Hans Lindblad,et al.  A Remark on Asymptotic Completeness for the Critical Nonlinear Klein-Gordon Equation , 2005, math/0510643.

[49]  W. Schlag SPECTRAL THEORY AND NONLINEAR PDE: A SURVEY , 2005, math/0509019.

[50]  W. Schlag,et al.  Dispersive Estimates for Schrödinger Operators in Dimensions One and Three , 2003, math/0306108.

[51]  K. Nakanishi,et al.  Asymptotic stability and completeness in the energy space for nonlinear Schrödinger equations with small solitary waves , 2003, math-ph/0308009.

[52]  C. Sulem,et al.  On asymptotic stability of solitary waves for nonlinear Schrödinger equations , 2003 .

[53]  Jacob T. Schwartz,et al.  Linear operators. Part II. Spectral theory , 2003 .

[54]  Tai-Peng Tsai,et al.  Asymptotic dynamics of nonlinear Schrödinger equations: Resonance‐dominated and dispersion‐dominated solutions , 2002 .

[55]  J. Delort,et al.  Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi linéaire à données petites en dimension $1$ , 2001 .

[56]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[57]  R. Weder Estimates for the Schrödinger Equation on the Line and Inverse Scattering for the Nonlinear Schrödinger Equation with a Potential ∗ , 2022 .

[58]  R. Weder The Wk, p-Continuity of the Schrödinger Wave Operators on the Line , 1999 .

[59]  A. Soffer,et al.  Resonances, radiation damping and instabilitym in Hamiltonian nonlinear wave equations , 1998, chao-dyn/9807003.

[60]  Nakao Hayashi,et al.  Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations , 1998 .

[61]  Pasquale Sodano,et al.  Kink-antikink interactions in the double sine-Gordon equation , 1996 .

[62]  Vladimir S. Buslaev,et al.  On the stability of solitary waves for nonlinear Schr?odinger equations , 1995 .

[63]  Michael I. Weinstein,et al.  Asymptotic stability of solitary waves , 1994 .

[64]  Israel Michael Sigal,et al.  Non-linear wave and Schrödinger equations , 1993 .

[65]  D. Yafaev Mathematical scattering theory , 1992 .

[66]  A. Soffer,et al.  Decay estimates for Schrödinger operators , 1991 .

[67]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[68]  I. Hwang THE L2-BOUNDEDNESS OF PSEUDODIFFERENTIAL OPERATORS , 1987 .

[69]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[70]  Jalal Shatah,et al.  Normal forms and quadratic nonlinear Klein‐Gordon equations , 1985 .

[71]  C. Wilcox Sound Propagation in Stratified Fluids , 1984 .

[72]  Daniel B. Henry,et al.  Stability theory for solitary-wave solutions of scalar field equations , 1982 .

[73]  P. Deift,et al.  Inverse scattering on the line , 1979 .

[74]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[75]  R. Vaillancourt,et al.  On the boundedness of pseudo-differential operators , 1971 .

[76]  F. Smithies Linear Operators , 2019, Nature.

[77]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .