Integrality properties of Böttcher coordinates for one-dimensional superattracting germs

Let $R$ be a ring of characteristic $0$ with field of fractions $K$ and let $m\geq 2$ . The Böttcher coordinate of a power series $\unicode[STIX]{x1D711}(x)\in x^{m}+x^{m+1}R\unicode[STIX]{x27E6}x\unicode[STIX]{x27E7}$ is the unique power series $f_{\unicode[STIX]{x1D711}}(x)\in x+x^{2}K\unicode[STIX]{x27E6}x\unicode[STIX]{x27E7}$ satisfying $\unicode[STIX]{x1D711}\circ f_{\unicode[STIX]{x1D711}}(x)=f_{\unicode[STIX]{x1D711}}(x^{m})$ . In this paper we study the integrality properties of the coefficients of $f_{\unicode[STIX]{x1D711}}(x)$ , partly for their intrinsic interest and partly for potential applications to $p$ -adic dynamics. Results include: (1) if $p$ is prime and $R=\mathbb{Z}_{p}$ and $\unicode[STIX]{x1D711}(x)\in x^{p}+px^{p+1}R\unicode[STIX]{x27E6}x\unicode[STIX]{x27E7}$ , then $f_{\unicode[STIX]{x1D711}}(x)\in R\unicode[STIX]{x27E6}x\unicode[STIX]{x27E7}$ . (2) If $\unicode[STIX]{x1D711}(x)\in x^{m}+mx^{m+1}R\unicode[STIX]{x27E6}x\unicode[STIX]{x27E7}$ , then $f_{\unicode[STIX]{x1D711}}(x)=x\sum _{k=0}^{\infty }a_{k}x^{k}/k!$ with all $a_{k}\in R$ . (3) In (2), if $m=p^{2}$ , then $a_{k}\equiv -1~\text{(mod}~p\text{)}$ for all $k$ that are powers of $p$ .

[1]  G. Ballew,et al.  The Arithmetic of Elliptic Curves , 2020, Elliptic Curves.

[2]  K. Nguyen,et al.  Bounded Height in Families of Dynamical Systems , 2017, 1703.05365.

[3]  K. Ueno B\"ottcher coordinates at superattracting fixed points of holomorphic skew products , 2014, 1412.2202.

[4]  Classification of one-dimensional superattracting germs in positive characteristic , 2013, Ergodic Theory and Dynamical Systems.

[5]  Arboreal Galois representations and uniformization of polynomial dynamics , 2011, 1111.3607.

[6]  Growth of attraction rates for iterates of a superattracting germ in dimension two , 2012, 1209.3450.

[7]  Contracting rigid germs in higher dimensions , 2011, 1109.6803.

[8]  B\"ottcher coordinates , 2011, 1104.2981.

[9]  Matthew Spencer Moduli Spaces of Power Series in Finite Characteristic , 2011 .

[10]  T. J. Tucker,et al.  The dynamical Mordell-Lang problem for étale maps , 2008, American Journal of Mathematics.

[11]  D. Ghioca,et al.  Periodic points, linearizing maps, and the dynamical Mordell–Lang problem , 2008, 0805.1560.

[12]  S. Ushiki Böttcher’s Theorem and Super-Stable Manifolds for Multidimensional Complex Dynamical Systems , 2005 .

[13]  Warren P. Johnson The Curious History of Faà di Bruno's Formula , 2002, Am. Math. Mon..

[14]  C. Favre Classification of 2-dimensional contracting rigid germs and Kato surfaces : I , 2000 .

[15]  J. Yoccoz,et al.  Generalizations of some theorems of small divisors to non archimedean fields , 1983 .

[16]  Steven Roman,et al.  The Formula of Faa Di Bruno , 1980 .

[17]  Barry Mazur,et al.  On Periodic Points , 1965 .