A Multi‐Scale Dynamic Mechanistic Model for the Transient Analysis of PEFCs

Electrochemical impedance spectroscopy is an experimental technique widely used for the transient analysis of PEFCs. Experimental results are usually analyzed using equivalent circuit models, which have to be fitted to each operation point and do not offer direct access to the internal physical parameters of the electrodes.

[1]  N. Mott,et al.  The interface between a metal and an electrolyte , 1961 .

[2]  A. Damjanović,et al.  Electrode kinetics of oxygen reduction on oxide-free platinum electrodes☆ , 1967 .

[3]  木村 嘉孝,et al.  ジャクソン著, 西田稔, 寺下陽一訳, 電磁気学I,II, 紀伊国屋書店, 東京, 1972-3, 通巻780ページ, 21.5×16cm, 各巻2,800円〔原著; J.D.Jackson, Classical Electrodynamics, John-Wiley & Sons, New York, 1962〕. , 1973 .

[4]  J. Bockris,et al.  Contributions of water dipoles to double layer properties: A three-state water model , 1977 .

[5]  A. Damjanović,et al.  Reaction intermediates as a controlling factor in the kinetics and mechanism of oxygen reduction at platinum electrodes , 1981 .

[6]  B. Conway,et al.  Behavior of overpotential—deposited species in Faradaic reactions—II. ac Impedance measurements on H2 evolution kinetics at activated and unactivated Pt cathodes , 1987 .

[7]  B. Conway,et al.  Kinetic theory of the open-circuit potential decay method for evaluation of behaviour of adsorbed intermediates. Analysis for the case of the H2 evolution reaction , 1987 .

[8]  B. Conway,et al.  ac Impedance of Faradaic reactions involving electrosorbed intermediates—I. Kinetic theory , 1987 .

[9]  J. Bockris,et al.  Water structure at interfaces: the present situation. , 1990, Advances in colloid and interface science.

[10]  S. Marshall,et al.  Analysis of molecular polarization and interaction in adsorbed monolayers of electrodes: Part 3. Ionic adsorption isotherm with mean field treatment of interactions involving ions and dipoles , 1992 .

[11]  B. Conway,et al.  Analysis of molecular polarization and interaction in adsorbed monolayers at electrodes part 1. Interaction between adsorbed dipoles , 1992 .

[12]  S. Marshall,et al.  Analysis of molecular polarization and interaction in adsorbed monolayers at electrodes , 1992 .

[13]  Mark W. Verbrugge,et al.  A Mathematical Model of the Solid‐Polymer‐Electrolyte Fuel Cell , 1992 .

[14]  John O’M. Bockris,et al.  Surface Electrochemistry: A Molecular Level Approach , 1993 .

[15]  H. White,et al.  The role of solvent dipole structure on the capacitance of charged interfaces , 1995 .

[16]  T. Springer,et al.  Characterization of polymer electrolyte fuel cells using ac impedance spectroscopy , 1996 .

[17]  M. Inaba,et al.  Hydrogen oxidation on partially immersed Nafion®-coated electrodes , 1996 .

[18]  J. C. Amphlett,et al.  A model predicting transient responses of proton exchange membrane fuel cells , 1996 .

[19]  D. Macdonald,et al.  Characterizing electrochemical systems in the frequency domain , 1998 .

[20]  A. Kornyshev,et al.  Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells , 1999 .

[21]  E. Passalacqua,et al.  Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC , 1999 .

[22]  Fabienne Berthier,et al.  Distinguishability of equivalent circuits containing CPEs Part I. Theoretical part , 2001 .

[23]  Koichi Kobayashi,et al.  Characterization of CO tolerance of PEMFC by ac impedance spectroscopy , 2001 .

[24]  S. Srinivasan,et al.  Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000 Part I. Fundamental scientific aspects , 2001 .

[25]  E. Gonzalez,et al.  Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells , 2001 .

[26]  Paola Costamagna,et al.  Transport phenomena in polymeric membrane fuel cells , 2001 .

[27]  Yann Bultel,et al.  Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion , 2001 .

[28]  G. Maggio,et al.  Modeling polymer electrolyte fuel cells: an innovative approach , 2001 .

[29]  Ned Djilali,et al.  THREE-DIMENSIONAL COMPUTATIONAL ANALYSIS OF TRANSPORT PHENOMENA IN A PEM FUEL CELL , 2002 .

[30]  B. Andreaus,et al.  Analysis of performance losses in polymer electrolyte fuel cells at high current densities by impedance spectroscopy , 2002 .

[31]  Y. Bultel,et al.  Modeling impedance diagrams of active layers in gas diffusion electrodes: diffusion, ohmic drop effects and multistep reactions , 2002 .

[32]  P. Ross,et al.  Surface science studies of model fuel cell electrocatalysts , 2002 .

[33]  V. Zhdanov,et al.  Role of the field fluctuations in electrochemical reactions , 2003 .

[34]  Nathan P. Siegel,et al.  Single domain PEMFC model based on agglomerate catalyst geometry , 2003 .

[35]  Göran Lindbergh,et al.  Transient Techniques for Investigating Mass-Transport Limitations in Gas Diffusion Electrodes I. Modeling the PEFC Cathode , 2003 .

[36]  M. Ciureanu,et al.  PEM fuel cells as membrane reactors: kinetic analysis by impedance spectroscopy , 2003 .

[37]  Robert M. Darling,et al.  Kinetic Model of Platinum Dissolution in PEMFCs , 2003 .

[38]  G. Lindbergh,et al.  Transient Techniques for Investigating Mass-Transport Limitations in Gas Diffusion Electrodes II. Experimental Characterization of the PEFC Cathode , 2003 .

[39]  P. Pickup,et al.  Ionic Conductivity of PEMFC Electrodes Effect of Nafion Loading , 2003 .

[40]  Kang Xu,et al.  Electrochemical impedance study on the low temperature of Li-ion batteries , 2004 .

[41]  Nathan P. Siegel,et al.  A two-dimensional computational model of a PEMFC with liquid water transport , 2004 .

[42]  G. Eigenberger,et al.  Transport parameters for the modelling of water transport in ionomer membranes for PEM-fuel cells , 2004 .

[43]  J. Diard,et al.  Impedance Measurement of Each Cell of a 10 W PEMFC Stack under Load , 2004 .

[44]  S. Holdcroft,et al.  Polarization-dependent mass transport parameters for orr in perfluorosulfonic acid ionomer membranes: an EIS study using microelectrodes , 2004 .

[45]  J. R. Jurado,et al.  Symmetrical electrode mode for PEMFC characterisation using impedance spectroscopy , 2005 .

[46]  Wolfgang G. Bessler,et al.  A new computational approach for SOFC impedance from detailed electrochemical reaction–diffusion models , 2005 .

[47]  Chao-Yang Wang,et al.  Transient analysis of polymer electrolyte fuel cells , 2005 .

[48]  Arjan van der Schaft,et al.  Compositional modelling of distributed-parameter systems , 2005 .

[49]  James J. McGuirk,et al.  Three-dimensional model of a complete polymer electrolyte membrane fuel cell : model formulation, validation and parametric studies , 2005 .

[50]  P. R. Pathapati,et al.  A new dynamic model for predicting transient phenomena in a PEM fuel cell system , 2005 .

[51]  S. Singhal,et al.  Solid oxide fuel cells IX (SOFC-IX) : proceedings of the international symposium , 2005 .

[52]  B. Maschke,et al.  Multiscale coupling in heterogeneous diffusion processes: a port-based approach , 2005, Proceedings. 2005 International Conference Physics and Control, 2005..

[53]  Bernhard Maschke,et al.  A Dynamic Mechanistic Model of an Electrochemical Interface , 2006 .

[54]  B. Maschke,et al.  A Multiscale Dynamic Mechanistic Model for Transient Analysis of Electrochemical Cells , 2006 .

[55]  A. Wokaun,et al.  Electrochemical impedance spectroscopy applied to polymer electrolyte fuel cells with a pseudo reference electrode arrangement , 2006 .