Supercoiling in DNA and chromatin☆

[1]  Andrew Travers,et al.  DNA structure and function , 2015, The FEBS journal.

[2]  Stormy J. Chamberlain,et al.  Topoisomerases facilitate transcription of long genes linked to autism , 2013, Nature.

[3]  Michelle D. Wang,et al.  Transcription Under Torsion , 2013, Science.

[4]  T. Hirano,et al.  Condensin II initiates sister chromatid resolution during S phase , 2013, The Journal of cell biology.

[5]  S. Cockroft,et al.  Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures , 2013, Nature Structural &Molecular Biology.

[6]  T. Przytycka,et al.  Transcription dependent dynamic supercoiling is a short-range genomic force , 2013, Nature Structural &Molecular Biology.

[7]  M. Schumacher,et al.  Molecular basis for a protein-mediated DNA-bridging mechanism that functions in condensation of the E. coli chromosome. , 2012, Molecular cell.

[8]  O. Chesnokova,et al.  Rates of Gyrase Supercoiling and Transcription Elongation Control Supercoil Density in a Bacterial Chromosome , 2012, PLoS genetics.

[9]  S. Adhya,et al.  Architectural organization in E. coli nucleoid. , 2012, Biochimica et biophysica acta.

[10]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[11]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[12]  Alberto Martin,et al.  Negative Supercoiling Creates Single-Stranded Patches of DNA That Are Substrates for AID–Mediated Mutagenesis , 2012, PLoS genetics.

[13]  A. Aguilera,et al.  Topological constraints impair RNA polymerase II transcription and causes instability of plasmid-borne convergent genes , 2011, Nucleic acids research.

[14]  T. Hirano,et al.  The relative ratio of condensin I to II determines chromosome shapes. , 2011, Genes & development.

[15]  T. Itoh,et al.  Chromosome length influences replication-induced topological stress , 2011, Nature.

[16]  J. Diffley,et al.  Positive Supercoiling of Mitotic DNA Drives Decatenation by Topoisomerase II in Eukaryotes , 2011, Science.

[17]  David Tollervey,et al.  Distinguishing the Roles of Topoisomerases I and II in Relief of Transcription-Induced Torsional Stress in Yeast rRNA Genes , 2010, Molecular and Cellular Biology.

[18]  J. Pérez-Ortín,et al.  A method for genome-wide analysis of DNA helical tension by means of psoralen–DNA photobinding , 2010, Nucleic acids research.

[19]  Seok-Cheol Hong,et al.  Minute negative superhelicity is sufficient to induce the B-Z transition in the presence of low tension , 2010, Proceedings of the National Academy of Sciences.

[20]  B. Piña,et al.  Positional dependence of transcriptional inhibition by DNA torsional stress in yeast chromosomes , 2010, The EMBO journal.

[21]  D. Levens,et al.  The functional response of upstream DNA to dynamic supercoiling in vivo , 2008, Nature Structural &Molecular Biology.

[22]  C. Lavelle Transcription elongation through a chromatin template. , 2007, Biochimie.

[23]  David Levens,et al.  The FUSE/FBP/FIR/TFIIH system is a molecular machine programming a pulse of c‐myc expression , 2006, The EMBO journal.

[24]  J. Mozziconacci,et al.  Structural plasticity of single chromatin fibers revealed by torsional manipulation , 2006, Nature Structural &Molecular Biology.

[25]  C. D. Hardy,et al.  Topological domain structure of the Escherichia coli chromosome. , 2004, Genes & development.

[26]  JAMES C. Wang,et al.  DNA axial rotation and the merge of oppositely supercoiled DNA domains in Escherichia coli: effects of DNA bends. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  R. Stein,et al.  Transcription-induced barriers to supercoil diffusion in the Salmonella typhimurium chromosome. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Parvin,et al.  DNA topoisomerase IIα is required for RNA polymerase II transcription on chromatin templates , 2001, Nature.

[29]  N. Cozzarelli,et al.  13S Condensin Actively Reconfigures DNA by Introducing Global Positive Writhe Implications for Chromosome Condensation , 1999, Cell.

[30]  P. Nelson Transport of torsional stress in DNA. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Elaine A. Ostrander,et al.  Local domains of supercoiling activate a eukaryotic promoter in vivo , 1993, Nature.

[32]  L. Lutter,et al.  Effects of histone acetylation on chromatin topology in vivo , 1992, Molecular and cellular biology.

[33]  G. Felsenfeld,et al.  A nucleosome core is transferred out of the path of a transcribing polymerase , 1992, Cell.

[34]  P. Hanawalt,et al.  Localized torsional tension in the DNA of human cells. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Q. Ju,et al.  Topoisomerases and yeast rRNA transcription: negative supercoiling stimulates initiation and topoisomerase activity is required for elongation. , 1992, Genes & development.

[36]  H. Handa,et al.  Negative supercoiling of DNA facilitates an interaction between transcription factor IID and the fibroin gene promoter. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[37]  E. Bradbury,et al.  Histone acetylation reduces nucleosome core particle linking number change , 1989, Cell.

[38]  G. Giaever,et al.  Supercoiling of intracellular DNA can occur in eukaryotic cells , 1988, Cell.

[39]  R. Sternglanz,et al.  Transcription-dependent DNA supercoiling in yeast DNA topoisomerase mutants , 1988, Cell.

[40]  R. Morse,et al.  Yeast nucleosomes allow thermal untwisting of DNA. , 1987, Nucleic acids research.

[41]  J. Wang,et al.  Supercoiling of the DNA template during transcription. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[42]  H. Weintraub,et al.  Expression of transfected DNA depends on DNA topology , 1986, Cell.

[43]  M. Gellert,et al.  Cruciform structures in palindromic DNA are favored by DNA supercoiling. , 1982, Journal of molecular biology.

[44]  H. Kowarzyk Structure and Function. , 1910, Nature.

[45]  J. Baxter,et al.  Physical linkages between sister chromatids and their removal during yeast chromosome segregation. , 2010, Cold Spring Harbor symposia on quantitative biology.

[46]  Andrew Travers,et al.  Bacterial chromatin. , 2005, Current opinion in genetics & development.

[47]  W. Garrard,et al.  DNA supercoiling in chromatin structure and gene expression. , 1992, Critical reviews in eukaryotic gene expression.

[48]  P. Hanawalt,et al.  Erratum: Localized torsional tension in the DNA of human cells (Proc. Natl. Acad. Sci. USA (July 1, 1992) 89:13 (6055-6059)) , 1992 .

[49]  S. Weisbrod,et al.  Active chromatin , 1982, Nature.

[50]  A. J. Clifford,et al.  BIOCHIMICA ET BIOPHYSICA ACTA , 2022 .