Arbitrary multi-qubit generation

We propose and analyse a scheme for single-rail-encoded arbitrary multi-qubit quantum-state generation to provide a versatile tool for quantum optics and quantum information applications. Our scheme can be realized, for small numbers of qubits, with current technologies using single photon inputs, passive linear optics, and heralding measurements. The particular examples of two- and three-qubit cluster states are studied in detail. We show that such states can be prepared with a high probability of success. Our analysis quantifies the effects of experimentally relevant imperfections and inefficiencies. The general case of arbitrary N-qubit preparation is discussed and some interesting connections to the boson sampling problem are given.

[1]  E. Knill,et al.  Quantum gates using linear optics and postselection , 2002 .

[2]  R. Bennink,et al.  Bright source of spectrally uncorrelated polarization-entangled photons with nearly single-mode emission. , 2010, Physical review letters.

[3]  A. Lvovsky,et al.  Generation and tomography of arbitrary optical qubits using transient collective atomic excitations. , 2014, Optics letters.

[4]  Timothy C. Ralph,et al.  Nondeterministic gates for photonic single-rail quantum logic , 2002 .

[5]  Christine Silberhorn,et al.  Heralded generation of ultrafast single photons in pure quantum States. , 2007, Physical review letters.

[6]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[7]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[8]  various Solving Polynomial Equations: Foundations, Algorithms, and Applications , 2010 .

[9]  Stephen A. Vavasis,et al.  Accurate solution of polynomial equations using Macaulay resultant matrices , 2004, Math. Comput..

[10]  Daniel A. Lidar,et al.  No-go theorem for passive single-rail linear optical quantum computing , 2011, Scientific Reports.

[11]  A. Sørensen,et al.  Quantum interface between light and atomic ensembles , 2008, 0807.3358.

[12]  Adaptive phase measurements in linear optical quantum computation , 2005, quant-ph/0507192.

[13]  M. Aspelmeyer,et al.  Quantum state orthogonalization and a toolset for quantum optomechanical phonon control. , 2012, Physical review letters.

[14]  Experiment towards continuous-variable entanglement swapping: Highly correlated four-partite quantum state , 2003, quant-ph/0302068.

[15]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[16]  Anton Zeilinger,et al.  Experimental access to higher-dimensional entangled quantum systems using integrated optics , 2015, 1502.06504.

[17]  Hidehiro Yonezawa,et al.  Generating superposition of up-to three photons for continuous variable quantum information processing. , 2012, Optics express.

[18]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[19]  Hao Zhang,et al.  Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon , 2015, Nature.

[20]  H. M. Wiseman Adaptive single-shot phase measurements: The full quantum theory , 1998 .

[21]  Generating superposition of upto three photons for continuous variable quantum information processing , 2013 .

[22]  L. Knoll,et al.  GENERATION OF ARBITRARY QUANTUM STATES OF TRAVELING FIELDS , 1999 .

[23]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[24]  Jian-Wei Pan,et al.  Experimental entanglement of six photons in graph states , 2006, quant-ph/0609130.

[25]  Jonathan P. Dowling,et al.  General linear-optical quantum state generation scheme: Applications to maximally path-entangled states , 2007 .

[26]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[27]  S. Barnett,et al.  OPTICAL STATE TRUNCATION BY PROJECTION SYNTHESIS , 1998 .

[28]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[29]  Vincenzo Tamma,et al.  Multiboson Correlation Interferometry with Arbitrary Single-Photon Pure States. , 2014, Physical review letters.

[30]  Jonathan P. Dowling,et al.  Maximal success probabilities of linear-optical quantum gates , 2008, 0808.1926.

[31]  Geoff J Pryde,et al.  A quantum Fredkin gate , 2016, Science Advances.

[32]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[33]  I. Walmsley,et al.  Spectral information and distinguishability in type-II down-conversion with a broadband pump , 1997 .

[34]  Scott Aaronson,et al.  The Computational Complexity of Linear Optics , 2013, Theory Comput..

[35]  N. Gisin,et al.  Quantum interference with photon pairs created in spatially separated sources , 2003 .

[36]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[37]  A. Furusawa,et al.  Hybrid discrete- and continuous-variable quantum information , 2014, Nature Physics.

[38]  Alicia Dickenstein,et al.  Solving Polynomial Equations: Foundations, Algorithms, and Applications , 2010 .

[39]  N. Gisin,et al.  Quantum repeaters with photon pair sources and multimode memories. , 2007, Physical review letters.