Gait planning and behavior-based control for statically-stable walking robots

A substantial portion of the Earth is inaccessible to any sort of wheeled mechanism--natural obstacles like large rocks, loose soil, deep ravines, and steep slopes conspire to render rolling locomotion ineffective. Hills, mountains, shores, seabeds, as well as the moon and other planets present similar terrain challenges. In many of these natural terrains, legs are well-suited. They can avoid small obstacles by making discrete contacts and passing up undesirable footholds. Legged mechanisms can climb over obstacles and step across ditches, surmounting terrain discontinuities of body-scale while staying level and stable. To achieve their potential, legged robots must coordinate their leg motions to climb over, step across and walk in natural terrain. These coordinated motions, which support and propel the robot, are called a gait. This thesis develops a new method of gait planning and control that enables statically-stable walking robots to produce a gait that is robust and productive in natural terrain. Independent task-achieving processes, called gait behaviors, establish a nominal gait, adapt it to the terrain, and react to disturbances like bumps and slips. Gait controlled in this way enabled the robot Dante II to walk autonomously in natural terrain, including the volcanic crater of Mount Spurr. This method extends to other walking robots as demonstrated by a generalized hexapod that performs the variety of gaits seen in six-legged insects, as well as aperiodic free gaits. The ability to change gait patterns on-the-fly with continuous, stable motion is a new development that enables robots to behave more like animals in adapting their gait to terrain. Finally, this thesis describes why walking robots need predictive plans as well as reflexive behaviors to walk effectively in the real world. It presents a method of guiding the behavior of a walking robot by planning distinct attributes of the desired gait. This partitioning of gait planning avoids the complexity of high degree-of-freedom motion planning. The ability to plan and foresee changes in gait improves performance while maintaining robust safety and stability.

[1]  Tsu-Tian Lee,et al.  A study of the gait control of a quadruped walking vehicle , 1986, IEEE J. Robotics Autom..

[2]  Hidetoshi Takahashi,et al.  Development on Aquatic Walking Robot for Underwater Inspection , 1988 .

[3]  Shin-Min Song,et al.  A Strategy of Wave Gait for a Walking Machine Traversing a Rough Planar Terrain , 1989 .

[4]  Shin-Min Song,et al.  Fully automated obstacle-crossing gaits for walking machines , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[5]  Erann Gat,et al.  Behavior control for robotic exploration of planetary surfaces , 1994, IEEE Trans. Robotics Autom..

[6]  S. Hirose Three basic types of locomotion in mobile robots , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[7]  T. Nakamura,et al.  Stair-climbing control of self-contained hexapod with semi-fixed gait , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[8]  Robert B. McGhee,et al.  Adaptive Locomotion of a Multilegged Robot over Rough Terrain , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[9]  William Whittaker,et al.  Configuration of Autonomous Walkers for Extreme Terrain , 1993, Int. J. Robotics Res..

[10]  H. Thomas,et al.  Planning strategies for the Ambler walking robot , 1990, 1990 IEEE International Conference on Systems Engineering.

[11]  S. Grillner Neurobiological bases of rhythmic motor acts in vertebrates. , 1985, Science.

[12]  R. Full Integration of individual leg dynamics with whole body movement in arthropod locomotion , 1993 .

[13]  Shigeo Hirose,et al.  A Study of Design and Control of a Quadruped Walking Vehicle , 1984 .

[14]  Reid G. Simmons,et al.  An integrated walking system for the Ambler planetary rover , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[15]  Takeo Kanade,et al.  Ambler: an autonomous rover for planetary exploration , 1989, Computer.

[16]  Erann Gat,et al.  Mars microrover navigation: performance evaluation and enhancement , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[17]  Jean-Guy Fontaine,et al.  Technics for gait transitions: architectural considerations , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[18]  Nils J. Nilsson,et al.  Teleo-Reactive Programs for Agent Control , 1993, J. Artif. Intell. Res..

[19]  H. J. Moore,et al.  Viking landing sites, remote-sensing observations, and physical properties of Martian surface materials , 1989 .

[20]  K. Pearson The control of walking. , 1976, Scientific American.

[21]  Jean-Claude Latombe,et al.  Experiments in dual-arm manipulation planning , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[22]  Reid G. Simmons,et al.  Performance of a six-legged planetary rover: power, positioning, and autonomous walking , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[23]  Rodney A. Brooks,et al.  Challenges for complete creature architectures , 1991 .

[24]  Kenneth J. Waldron,et al.  A review of research on walking vehicles , 1989 .

[25]  Leon Sterling,et al.  Heterogeneous Neural Networks for Adaptive Behavior in Dynamic Environments , 1988, NIPS.

[26]  Randall D. Beer,et al.  A qualitative dynamical analysis of evolved locomotion controllers , 1993 .

[27]  D. J. Todd Walking machines : an introduction to legged robots , 1985 .

[28]  Tracy L. Anderson,et al.  Animal behavior as a paradigm for developing robot autonomy , 1990, Robotics Auton. Syst..

[29]  D. Graham Pattern and Control of Walking in Insects , 1985 .

[30]  Raja Chatila,et al.  Plan execution monitoring and control architecture for mobile robots , 1995, IEEE Trans. Robotics Autom..

[31]  R. Simmons,et al.  Autonomous Walking Results with the Ambler Hexapod Planetary Rover , 1993 .

[32]  Eric A. Ribble,et al.  Technical Description of the Adaptive Suspension Vehicle , 1990, Int. J. Robotics Res..

[33]  Y. Ding,et al.  Deadlock avoidance for a quadruped with free gait , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[34]  Fred Delcomyn The walking of cockroaches—deceptive simplicity , 1993 .

[35]  William Whittaker,et al.  Energy-Based Stability Measures for Reliable Locomotion of Statically Stable Walkers: Theory and Application , 1994, Int. J. Robotics Res..

[36]  Rodney A. Brooks,et al.  A robot that walks; emergent behaviors from a carefully evolved network , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[37]  H. J. Chiel,et al.  A lesion study of a heterogeneous artificial neural network for hexapod locomotion , 1989, International 1989 Joint Conference on Neural Networks.

[38]  Sanjiv Singh,et al.  Synthesis of tactical plans for robotic excavation , 1996 .

[39]  Kenneth J. Waldron,et al.  The mechanics of mobile robots , 1986, Robotics.

[40]  Kenneth J. Waldron,et al.  Machines That Walk: The Adaptive Suspension Vehicle , 1988 .

[41]  Enric Celaya,et al.  Force-Based Control of a Six-Legged Robot on Abrupt Terrain using the Subsumtion Architecture , 1995 .

[42]  Dimitry M. Gorinevsky,et al.  Force Control in Locomotion of Legged Vehicles over Rigid and Soft Surfaces , 1990, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[43]  N. Koyachi,et al.  Mechanism and control of a quadruped walking robot , 1988, IEEE Control Systems Magazine.

[44]  David Wettergreen,et al.  Behavior-based gait execution for the Dante II walking robot , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[45]  Randall D. Beer,et al.  A Biological Perspective Agent Design o n Autonomous 169 , 2022 .

[46]  Leslie Pack Kaelbling,et al.  Action and planning in embedded agents , 1990, Robotics Auton. Syst..

[47]  Jeffrey Dean,et al.  Artificial neural nets for controlling a 6-legged walking system , 1993 .

[48]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[49]  Marc H. Railbert Legged robots , 1991 .

[50]  H. B. Brown,et al.  Machines That Walk , 1983 .

[51]  Eadweard Muybridge,et al.  Animals in Motion , 1957 .

[52]  David E. Orin,et al.  The kinematics of motion planning for multilegged vehicles over uneven terrain , 1988, IEEE J. Robotics Autom..

[53]  Michael L. Nelson,et al.  An experimental comparison of hierarchical and subsumption software architectures for control of an autonomous underwater vehicle , 1992, Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle Technology.

[54]  Dimitrios Apostolopoulos,et al.  Locomotion configuration of a robust rappelling robot , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[55]  Kenneth J. Waldron Mobility and controllability characteristics of mobile robotic platforms , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[56]  Prabir K. Pal,et al.  A free gait for generalized motion , 1990, IEEE Trans. Robotics Autom..

[57]  R. Beer,et al.  Intelligence as Adaptive Behavior: An Experiment in Computational Neuroethology , 1990 .

[58]  Rodney A. Brooks,et al.  Learning to Coordinate Behaviors , 1990, AAAI.

[59]  F. Ozguner,et al.  An Approach to the Use of Terrain- Preview Information in Rough-Terrain Locomotion by a Hexapod Walking Machine , 1984 .

[60]  S. Desa,et al.  A walking prescription for statically-stable walkers based on walker/terrain interaction , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[61]  Jean-Claude Latombe,et al.  Robot motion planning with many degrees of freedom and dynamic constraints , 1991 .

[62]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[63]  Dennis B. Beringer,et al.  Supervisory interface with expert systems for semiautonomous walking robots , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[64]  Owen Holland,et al.  The neural control of locomotion in a quadrupedal robot , 1991 .

[65]  Hannu Lehtinen,et al.  MECANT I: a six legged walking machine for research purposes in outdoor environment , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[66]  Takeo Kanade,et al.  Methods for Identifying Footfall Positions for a Legged Robot , 1989, Proceedings. IEEE/RSJ International Workshop on Intelligent Robots and Systems '. (IROS '89) 'The Autonomous Mobile Robots and Its Applications.

[67]  Shigeo Hirose,et al.  Sky-Hook Suspension control of a quadruped walking vehicle , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[68]  Jonathan H. Connell,et al.  SSS: a hybrid architecture applied to robot navigation , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[69]  Steven Dubowsky,et al.  Motion planning of mobile multi-limb robotic systems subject to force and friction constraints , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[70]  Z. Zenn Bien,et al.  A hierarchical strategy for planning crab gaits of a quadruped walking robot , 1994, Robotica.

[71]  Ruzena Bajcsy,et al.  Robotic exploration of surfaces and its application to legged locomotion , 1991, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[72]  William Whittaker,et al.  Leveling of the AMBLER Walking Machine: A Comparison of Methods. , 1991 .

[73]  Takeo Kanade,et al.  High-Resolution Terrain Map from Multiple Sensor Data , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[74]  Marc H. Raibert,et al.  Legged Robots That Balance , 1986, IEEE Expert.

[75]  R. McN. Alexander,et al.  The Gaits of Bipedal and Quadrupedal Animals , 1984 .

[76]  Joseph S. Byrd,et al.  A Six-Legged Telerobot for Nuclear Applications Development , 1990, Int. J. Robotics Res..

[77]  Marc D. Donner,et al.  Control of walking: local control and real time systems , 1984 .

[78]  J. Pringle The Reflex Mechanism of the Insect Leg , 1940 .

[79]  Regis Hoffman,et al.  Terrain mapping for a walking planetary rover , 1994, IEEE Trans. Robotics Autom..

[80]  Shigeo Hirose,et al.  Dynamic and static fusion gait of a quadruped walking vehicle on a winding path , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[81]  Nadine N. Tschichold-Gürman,et al.  The development of a robot terrain interaction system for walking machines , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[82]  Maja J. Matarić,et al.  Behavior-Based Control: Main Properties and Implications , 1992 .

[83]  Shigeo Hirose,et al.  Walking and running of the quadruped wall-climbing robot , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[84]  Werner Neubauer Locomotion with articulated legs in pipes or ducts , 1993, Robotics Auton. Syst..

[85]  Andrew H. Fagg,et al.  Genetic programming approach to the construction of a neural network for control of a walking robot , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[86]  David Chapman,et al.  What are plans for? , 1990, Robotics Auton. Syst..

[87]  Shin-Min Song,et al.  Stability analysis of wave-crab gaits of a quadruped , 1990, J. Field Robotics.

[88]  Cynthia Ferrell Global behavior via cooperative local control , 1995, Auton. Robots.

[89]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[90]  Reid Simmons,et al.  Experience with a Task Control Architecture for Mobile Robots , 1989 .

[91]  Charles A. Klein,et al.  Automatic body regulation for maintaining stability of a legged vehicle during rough-terrain locomotion , 1985, IEEE J. Robotics Autom..

[92]  I. Stewart,et al.  Coupled nonlinear oscillators and the symmetries of animal gaits , 1993 .

[93]  Pattie Maes,et al.  Situated agents can have goals , 1990, Robotics Auton. Syst..

[94]  柳沢健 A walking robot , 1993 .

[95]  Suren N. Dwivedi,et al.  Terrain adaptive gaits for the Ambler , 1990, Adv. Robotics.

[96]  Reid G. Simmons,et al.  Learning Football Evaluation for a Walking Robot , 1991, ML.

[97]  William Whittaker,et al.  Exploring Mount Erebus by walking robot , 1993, Robotics Auton. Syst..

[98]  Kenneth J. Waldron,et al.  Configuration Design of the Adaptive Suspension Vehicle , 1984 .

[99]  David Kirsh,et al.  Today the Earwig, Tomorrow Man? , 1991, Artif. Intell..

[100]  Shigeo Hirose,et al.  Dynamic And Static Fusion Control Of Quadruped Walking Vehicle , 1989, Proceedings. IEEE/RSJ International Workshop on Intelligent Robots and Systems '. (IROS '89) 'The Autonomous Mobile Robots and Its Applications.

[101]  Minoru Abe,et al.  Study on Walking Machines With Decoupled Freedoms , 1989, J. Robotics Mechatronics.

[102]  Dave Cliff,et al.  Computational neuroethology: a provisional manifesto , 1991 .

[103]  Jessica K. Hodgins,et al.  Adjusting step length for rough terrain locomotion , 1991, IEEE Trans. Robotics Autom..

[104]  Charles A. Klein,et al.  Force interaction and allocation for the legs of a walking vehicle , 1987, IEEE Journal on Robotics and Automation.

[105]  Phillip J. McKerrow,et al.  Introduction to robotics , 1991 .

[106]  Charles A. Klein,et al.  Optimal force distribution for the legs of a walking machine with friction cone constraints , 1990, IEEE Trans. Robotics Autom..

[107]  D. Wilson Insect walking. , 1966, Annual review of entomology.

[108]  E. Kugushev,et al.  Problems of Selecting A Galt For An Integrated Locomotion Robot , 1975, IJCAI.

[109]  Robert B. McGhee,et al.  Some finite state aspects of legged locomotion , 1968 .

[110]  Jun-Ho Oh,et al.  An aperiodic straight motion planning method for a quadruped walking robot , 1995, Auton. Robots.

[111]  Prabir K. Pal,et al.  Generation of free gait-a graph search approach , 1991, IEEE Trans. Robotics Autom..

[112]  H. Cruse,et al.  The stick insect as a walking robot , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[113]  Jessica K. Hodgins,et al.  Dynamically Stable Legged Locomotion , 1983 .

[114]  Pablo González de Santos,et al.  Attitude and position control method for realistic legged vehicles , 1996, Robotics Auton. Syst..

[115]  Eiji Nakano,et al.  Adaptive Gait for Quadruped Walking Robot Using Force Sensor Attached in Foot , 1991 .

[116]  Charles A. Klein,et al.  An adaptive gait for legged walking machines over rough terrain , 1993, IEEE Trans. Syst. Man Cybern..

[117]  Z. Zenn Bien,et al.  Neural computation for adaptive gait control of the quadruped over rough terrain , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[118]  K. Inagaki,et al.  Basic design of a hexapod walking robot , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[119]  Rebecca M. Baker,et al.  See how they ran , 1970 .

[120]  Patrik Larsson,et al.  A Distributed Neural Network Architecture for Hexapod Robot Locomotion , 1992, Neural Computation.

[121]  Marc D. Donner Real-Time Control of Walking , 1987, Progress in Computer Science.

[122]  Atsuo Takanishi,et al.  A control method for dynamic biped walking under unknown external force , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[123]  Friedrich Pfeiffer,et al.  Six-legged technical walking considering biological principles , 1995, Robotics Auton. Syst..

[124]  Shin-Min Song,et al.  Turning gait of a quadrupedal walking machine , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[125]  M. G. Bekker Theory of Land Locomotion: The Mechanics of Vehicle Mobility , 1962 .

[126]  Robert B. McGhee,et al.  Rule-based motion coordination for the adaptive suspension vehicle , 1988 .

[127]  Jean-Daniel Boissonnat,et al.  Motion planning for spider robots , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[128]  Ronald C. Arkin,et al.  Towards the Unification of Navigational Planning and Reactive Control , 1989 .

[129]  Sunil Cherian,et al.  A neural network based behavior hierarchy for locomotion control , 1993 .

[130]  Ronald C. Arkin,et al.  Modeling neural function at the schema level: implications and results for robotic control , 1993 .

[131]  Ronald C. Arkin,et al.  Motor schema based navigation for a mobile robot: An approach to programming by behavior , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[132]  William Whittaker,et al.  Walking robot with a circulating gait , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[133]  Takeo Kanade,et al.  High resolution terrain map from multiple sensor data , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[134]  Kenneth J. Waldron,et al.  An Analytical Approach for Gait Study and Its Applications on Wave Gaits , 1987 .

[135]  I. Stewart,et al.  Symmetry-breaking bifurcation: A possible mechanism for 2:1 frequency-locking in animal locomotion , 1992, Journal of mathematical biology.

[136]  Erann Gat,et al.  On the Role of Stored Internal State in the Control of Autonomous Mobile Robots , 1993, AI Mag..

[137]  K. Pearson,et al.  Characteristics of Leg Movements and Patterns of Coordination in Locusts Walking on Rough Terrain , 1984 .

[138]  Erann Gat,et al.  Integrating Planning and Reacting in a Heterogeneous Asynchronous Architecture for Controlling Real-World Mobile Robots , 1992, AAAI.

[139]  Ronald C. Arkin,et al.  Motor Schema — Based Mobile Robot Navigation , 1989, Int. J. Robotics Res..

[140]  R. McGhee,et al.  On the stability properties of quadruped creeping gaits , 1968 .

[141]  Dinesh K. Pai,et al.  Platonic beasts: a new family of multilimbed robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[142]  Paul Taylor,et al.  See how they run , 1975, Nature.

[143]  Joseph Ayers,et al.  Lobster walking as a model for an omnidirectional robotic ambulation architecture , 1993 .

[144]  Robert B. McGhee,et al.  Rule-based motion coordination for a hexapod walking machine , 1989, Adv. Robotics.

[145]  A. Preumont,et al.  Gait analysis and implementation of a six leg walking machine , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[146]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[147]  Pattie Maes,et al.  Behavior-based artificial intelligence , 1993 .

[148]  Vijay R. Kumar,et al.  Adaptive gait control for a walking robot , 1989, J. Field Robotics.

[149]  Ching-Long Shih,et al.  Gait Synthesis for a biped robot , 1997, Robotica.

[150]  W. L. Whittaker,et al.  Inverse Dynamic Models of Closed-Chain Mechanisms With Contact Compliance , 1992 .

[151]  Cynthia Ferrell,et al.  Robust Agent Control of an Autonomous Robot with Many Sensors and Actuators , 1993 .

[152]  Michael R. Gossop An Introduction to Animal Behaviour, Second Edition, Aubrey Manning. Arnold, London (1972), Price £3·80 , 1976 .

[153]  Rodney A. Brooks,et al.  Intelligence Without Reason , 1991, IJCAI.

[154]  Terrence Fong,et al.  OPERATOR INTERFACES AND NETWORK-BASED PARTICIPATION FOR DANTE II , 1995 .

[155]  Reid G. Simmons,et al.  Single leg walking with integrated perception, planning and control , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[156]  Jean-Claude Latombe,et al.  A Monte-Carlo algorithm for path planning with many degrees of freedom , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[157]  Ivan E. Sutherland,et al.  Footprints in the Asphalt , 1984 .

[158]  J. Loch,et al.  Reactive Navigation through Rough Terrain: Experimental Results , 1992, AAAI.

[159]  Uwe Schnepf,et al.  Robot ethology: a proposal for the research into intelligent autonomous systems , 1991 .

[160]  Sasha N. Zill,et al.  Load compensatory reactions in insects: swaying and stepping strategies in posture and locomotion , 1993 .

[161]  Yuan F. Zheng,et al.  Gait synthesis for a biped robot climbing sloping surfaces using neural networks. II. Dynamic learning , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[162]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[163]  Peter V. Nagy A Minimum-Slip Attitude Control Method for the Erebus Walking Robot , 1992 .

[164]  Friedrich Pfeiffer,et al.  Dynamics of the walking stick insect , 1990, IEEE Control Systems.

[165]  David Wettergreen,et al.  Gait Generation For Legged Robots , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[166]  Jessica K. Hodgins,et al.  Biped Gymnastics , 1988, Int. J. Robotics Res..

[167]  Anthony Stentz,et al.  Against Complex Architectures , 1989, Proceedings of the 6th International Symposium on Unmanned Untethered Submersible Technology,.

[168]  Jun-Ho Oh,et al.  An aperiodic Z type spinning gait planning method for a quadruped walking robot , 1995, Auton. Robots.