Convergence rate of evolutionary algorithms for a class of convex objective functions

Probabilistic optimization algorithms that mimic the process of biological evo lution are usually subsumed under the term evolutionary algorithms This work extends the convergence theory of evolutionary algorithms by presenting a su cient convergence condition for those evolutionary algorithms that do not necessarily gen erate a sequence of feasible points such that the associated objective function values decrease monotonically to the global minimum Moreover it is investigated how fast the sequence of objective function values generated by an evolutionary algo rithm approaches the minimumof strongly convex functions in a probabilistic sense The theoretical analysis presented here distinguishes from related studies in three points First it does not require advanced calculus Second only the rst partial derivatives of the objective function are assumed to exist Third one obtains sharp bounds on the convergence rates for a class of functions being a superset of the class of quadratic functions with positive de nite Hessian matrix

[1]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[2]  Günter Rudolph,et al.  Convergence of non-elitist strategies , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[3]  John Darzentas,et al.  Problem Complexity and Method Efficiency in Optimization , 1983 .

[4]  U. G. Oppel,et al.  Auf der Zufallssuche basierende Evolutionsprozesse , 1978 .

[5]  Dipl. Ing. Karl Heinz Kellermayer NUMERISCHE OPTIMIERUNG VON COMPUTER-MODELLEN MITTELS DER EVOLUTIONSSTRATEGIE Hans-Paul Schwefel Birkhäuser, Basel and Stuttgart, 1977 370 pages Hardback SF/48 ISBN 3-7643-0876-1 , 1977 .

[6]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[7]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[8]  G. Rappl On Linear Convergence of a Class of Random Search Algorithms , 1989 .

[9]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[10]  H Robbins,et al.  Complete Convergence and the Law of Large Numbers. , 1947, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[12]  H. Schwefel,et al.  Analyzing (1; ) Evolution Strategy via Stochastic Approximation Methods , 1995 .

[13]  K. Steiglitz,et al.  Adaptive step size random search , 1968 .

[14]  Eugene Lukacs STOCHASTIC CONVERGENCE CONCEPTS AND THEIR PROPERTIES , 1975 .

[15]  J´nos Pintér,et al.  Convergence properties of stochastic optimization procedures , 1984 .

[16]  Luc Devroye,et al.  On the Convergence of Statistical Search , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  Ingo Rechenberg,et al.  Evolutionsstrategie '94 , 1994, Werkstatt Bionik und Evolutionstechnik.

[18]  J. Hüsler Extremes and related properties of random sequences and processes , 1984 .

[19]  H. Scheffé A Useful Convergence Theorem for Probability Distributions , 1947 .