Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem

This paper provides an accelerated two-grid stabilized mixed finite element scheme for the Stokes eigenvalue problem based on the pressure projection. With the scheme, the solution of the Stokes eigenvalue problem on a fine grid is reduced to the solution of the Stokes eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. By solving a slightly different linear problem on the fine grid, the new algorithm significantly improves the theoretical error estimate which allows a much coarser mesh to achieve the same asymptotic convergence rate. Finally, numerical experiments are shown to verify the high efficiency and the theoretical results of the new method.

[1]  Yanping Lin,et al.  A priori L 2 error estimates for finite-element methods for nonlinear diffusion equations with memory , 1990 .

[2]  Jinchao Xu Two-grid Discretization Techniques for Linear and Nonlinear PDEs , 1996 .

[3]  Clark R. Dohrmann,et al.  Stabilization of Low-order Mixed Finite Elements for the Stokes Equations , 2004, SIAM J. Numer. Anal..

[4]  Yinnian He,et al.  Numerical Investigations on Several Stabilized Finite Element Methods for the Stokes Eigenvalue Problem , 2011 .

[5]  W. Ames,et al.  Nonlinear problems in abstract cones , 1988 .

[6]  M. Stynes,et al.  Numerical methods for singularly perturbed differential equations : convection-diffusion and flow problems , 1996 .

[7]  Yidu Yang,et al.  Generalized Rayleigh quotient and finite element two-grid discretization schemes , 2009 .

[8]  C.-S. Chien,et al.  A Two-Grid Discretization Scheme for Semilinear Elliptic Eigenvalue Problems , 2005, SIAM J. Sci. Comput..

[9]  E. W. Laedke,et al.  Evolution theorem for a class of perturbed envelope soliton solutions , 1983 .

[10]  Hehu Xie,et al.  Asymptotic expansions and extrapolations of eigenvalues for the stokes problem by mixed finite element methods , 2008 .

[11]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[12]  Jean E. Roberts,et al.  Global estimates for mixed methods for second order elliptic equations , 1985 .

[13]  Jiaquan Liu,et al.  Soliton solutions for quasilinear Schrödinger equations, II , 2003 .

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  V. Makhankov,et al.  Non-linear effects in quasi-one-dimensional models of condensed matter theory , 1984 .

[16]  Hao Li,et al.  The adaptive finite element method based on multi-scale discretizations for eigenvalue problems , 2013, Comput. Math. Appl..

[17]  L. Arlotti,et al.  Perturbations of Positive Semigroups with Applications , 2005 .

[18]  Qun Lin,et al.  New expansions of numerical eigenvalues for -Δu = λρu by nonconforming elements , 2008, Math. Comput..

[19]  Lin Qun,et al.  High accuracy analysis for integrodifferential equations , 1998 .

[20]  Eun Kyoung Lee,et al.  Multiple positive solutions of singular two point boundary value problems for second order impulsive differential equations , 2004, Appl. Math. Comput..

[21]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[22]  Yanping Lin,et al.  Higher Accuracy Methods for Second-Kind Volterra Integral Equations Based on Asymptotic Expansions of Iterated Galerkin Methods , 1998 .

[23]  N. U. Ahmed,et al.  Optimal feedback control for impulsive systems on the space of finitely additive measures , 2007, Publicationes Mathematicae Debrecen.

[24]  Tao Lin,et al.  Petrov-Galerkin Methods for Linear Volterra Integro-Differential Equations , 2000, SIAM J. Numer. Anal..

[25]  Shuhua Zhang,et al.  Asymptotic Expansions and Richardson Extrapolation of Approximate Solutions for Second Order Elliptic Problems on Rectangular Domains by Mixed Finite Element Methods , 2006, SIAM J. Numer. Anal..

[26]  Fukun Zhao,et al.  Existence and multiplicity of periodic solution for non-autonomous second-order systems with linear nonlinearity , 2005 .

[27]  M. Badiale,et al.  Semilinear Elliptic Equations for Beginners: Existence Results via the Variational Approach , 2010 .

[28]  Ó JoãoMarcosdo,et al.  Soliton solutions for quasilinear Schrodinger equations: the critical exponential case , 2007 .

[29]  P. Hansbo,et al.  A simple pressure stabilization method for the Stokes equation , 2007 .

[30]  Xianhua Tang,et al.  Solutions of a second-order Hamiltonian system with periodic boundary conditions , 2010 .

[31]  Haiyan Wang Periodic solutions to non-autonomous second-order systems , 2009 .

[32]  V. Thomée,et al.  Numerical solution of semilinear integrodifferential equations of parabolic type with nonsmooth data , 1989 .

[33]  Carlos E. Kenig,et al.  The Dirichlet problem for the Stokes system on Lipschitz domains , 1988 .

[34]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[35]  Andrzej Szulkin,et al.  Multiple solutions for a quasilinear Schrödinger equation , 2013 .

[36]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[37]  Yong-Kui Chang,et al.  Existence results for impulsive neutral functional differential equations with infinite delay , 2008 .

[38]  Shinji Adachi,et al.  Trudinger type inequalities in R^N and their best exponents , 2000 .

[39]  D. Edmunds,et al.  Asymptotically Sharp Multiplicative Inequlities , 1995 .

[40]  Gang Li,et al.  Existence results for semilinear differential equations with nonlocal and impulsive conditions , 2010 .

[41]  M. Krízek Conforming finite element approximation of the Stokes problem , 1990 .

[42]  João Marcos do Ó,et al.  Solitary waves for a class of quasilinear Schrödinger equations in dimension two , 2010 .

[43]  Mathieu Colin,et al.  Solutions for a quasilinear Schr"odinger equation: a dual approach , 2004 .

[44]  Jie Yang,et al.  Periodic Solutions for a Class of Non-autonomous Second Order Systems , 2010 .

[45]  V. Lakshmikantham,et al.  Monotone iterative technique for differential equations in a Banach space , 1982 .

[46]  Jean-Claude Saut,et al.  Global Existence of Small Solutions to a Relativistic Nonlinear Schrödinger Equation , 1997 .

[47]  Yongkun Li,et al.  Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects , 2010 .

[48]  Józef Banaś,et al.  Measures of Noncompactness in Banach Spaces , 1980 .

[49]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[50]  Daqing Jiang,et al.  Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations , 2006 .

[51]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[52]  Chun-Lei Tang,et al.  Periodic solutions for nonautonomous second order systems with sublinear nonlinearity , 1998 .

[53]  G. Quispel,et al.  Equation of motion for the Heisenberg spin chain , 1981 .

[54]  Hehu Xie,et al.  A Multigrid Method Based On Shifted-Inverse Power Technique for Eigenvalue Problems , 2014, 1401.5378.

[55]  Yongkun Li,et al.  Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects , 2009 .

[56]  Hehu Xie,et al.  Postprocessing and higher order convergence for the mixed finite element approximations of the eigenvalue problem , 2011 .

[57]  F. Chatelin Spectral approximation of linear operators , 2011 .

[58]  Shuhua Zhang,et al.  Asymptotic expansions and Richardson extrapolation of approximate solutions for integro-differential equations by mixed finite element methods , 2008, Adv. Comput. Math..

[59]  Christian Wieners A numerical existence proof of nodal lines for the first eigenfunction of the plate equation , 1996 .

[60]  C. Bernardi,et al.  Analysis of some finite elements for the Stokes problem , 1985 .

[61]  Vidar Thomée,et al.  Error estimates for semidiscrete finite element methods for parabolic integro-differential equations , 1989 .

[62]  J. Mawhin,et al.  Critical Point Theory and Hamiltonian Systems , 1989 .

[63]  Xianhua Tang,et al.  EXISTENCE OF SOLUTIONS FOR A CLASS OF $p$-LAPLACIAN SYSTEMS WITH IMPULSIVE EFFECTS , 2012 .

[64]  Gene H. Golub,et al.  Matrix computations , 1983 .

[65]  Min Wang,et al.  Controllability of impulsive differential systems with nonlocal conditions , 2011, Appl. Math. Comput..

[66]  Jin Liang,et al.  Nonlocal Cauchy problems for semilinear evolution equations , 2002 .

[67]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[68]  Martin Schechter,et al.  On the Solvability of Semilinear Gradient Operator Equations , 1977 .

[69]  V. Lakshmikantham,et al.  Theory of Impulsive Differential Equations , 1989, Series in Modern Applied Mathematics.

[70]  J. H. Wilkinson,et al.  Inverse Iteration, Ill-Conditioned Equations and Newton’s Method , 1979 .

[71]  Vidar Thomée,et al.  Time discretization of an integro-differential equation of parabolic type , 1986 .

[72]  Zhi-Qiang Wang,et al.  Solutions for Quasilinear Schrödinger Equations via the Nehari Method , 2004 .

[73]  Andrey B. Andreev,et al.  Superconvergence Postprocessing for Eigenvalues , 2002 .

[74]  Chun-Lei Tang,et al.  Periodic Solutions for Second Order Systems with Not Uniformly Coercive Potential , 2001 .

[75]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[76]  K. Kolman,et al.  A Two-Level Method for Nonsymmetric Eigenvalue Problems , 2005 .

[77]  Zhang,et al.  ASYMPTOTIC ERROR EXPANSION AND DEFECT CORRECTION FOR SOBOLEV AND VISCOELASTICITY TYPE EQUATIONS , 1998 .

[78]  Raytcho D. Lazarov,et al.  Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems , 2005 .

[79]  Qun Lin,et al.  Finite element methods : accuracy and improvement = 有限元方法 : 精度及其改善 , 2006 .

[80]  Yimin Zhang,et al.  Quasilinear elliptic equations involving the N-Laplacian with critical exponential growth in RN , 2009 .

[81]  An acceleration method for integral equations by using interpolation post-processing , 1998, Adv. Comput. Math..

[82]  Jin Liang,et al.  Existence of classical solutions to nonautonomous nonlocal parabolic problems , 2005 .

[83]  James Serrin,et al.  Local behavior of solutions of quasi-linear equations , 1964 .

[84]  Elliott H. Lieb,et al.  A Relation Between Pointwise Convergence of Functions and Convergence of Functionals , 1983 .

[85]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[86]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[87]  Richard E. Ewing,et al.  A numerical approximation of non-Fickian flows with mixing length growth in porous media. , 2001 .

[88]  Xianlong Fu,et al.  Existence of solutions for neutral functional differential evolution equations with nonlocal conditions , 2003 .

[89]  I. Sloan,et al.  Extrapolation of the iterated—collocation method for integral equations of the second kind , 1990 .

[90]  Qun Lin,et al.  An immediate analysis for global superconvergence for integrodifferential equations , 1997 .

[91]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[92]  Jun Ping Wang Superconvergence and extrapolation for mixed finite element methods on rectangular domains , 1991 .

[93]  Jianhua Shen,et al.  Nonlinear boundary value problems for first order impulsive functional differential equations , 2007, Appl. Math. Comput..

[94]  Jean Mawhin,et al.  Critical points of convex perturbations of some indefinite quadratic forms and semi-linear boundary value problems at resonance , 1986 .

[95]  Rolf Stenberg,et al.  A posteriori estimates for the Stokes eigenvalue problem , 2009 .

[96]  Joseph E. Pasciak,et al.  Shift Theorems for the Biharmonic Dirichlet Problem , 2002 .

[97]  Wei Chen,et al.  Approximation of an Eigenvalue Problem Associated with the Stokes Problem by the Stream Function-Vorticity-Pressure Method , 2006 .

[98]  R. Rannacher,et al.  Asymptotic error expansion and Richardson extranpolation for linear finite elements , 1986 .

[99]  Vidar Thomée,et al.  Numerical methods for hyperbolic and parabolic integro-differential equations , 1992 .

[100]  Jin Liang,et al.  Nonlocal Cauchy problems governed by compact operator families , 2004 .

[101]  Hai Bi,et al.  Two-Grid Finite Element Discretization Schemes Based on Shifted-Inverse Power Method for Elliptic Eigenvalue Problems , 2011, SIAM J. Numer. Anal..

[102]  Yinnian He,et al.  A stabilized finite element method based on two local Gauss integrations for the Stokes equations , 2008 .

[103]  Hehu Xie,et al.  Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems , 2009 .

[104]  D. Jackson,et al.  Existence and uniqueness of solutions to semilinear nonlocal parabolic equations , 1993 .

[105]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[106]  David Ruiz,et al.  Existence of ground states for a modified nonlinear Schrödinger equation , 2009, 0910.5827.

[107]  Yinnian He,et al.  Two-level stabilized finite element method for Stokes eigenvalue problem , 2012 .

[108]  Ravi P. Agarwal,et al.  Multiple nonnegative solutions for second order impulsive differential equations , 2000, Appl. Math. Comput..

[109]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[110]  V. Thomée,et al.  Ritz-Volterra projections to finite-element spaces and applications to integrodifferential and related equations , 1991 .

[111]  Lin Qu METHODS FOR IMPROVING APPROXIMATE ACCURACY FOR HYPERBOLIC INTEGRODIFFERENTIAL EQUATIONS , 1997 .

[112]  Dongwoo Sheen,et al.  Locally stabilized p1-nonconforming quadrilateral and hexahedral finite element methods for the Stokes equations , 2011, J. Comput. Appl. Math..

[113]  M. Benchohra,et al.  Impulsive differential equations and inclusions , 2006 .

[114]  Lu Tao,et al.  A MUCLTI-PARAMETER SPLITTING EXTRAPOLATION AND A PARALLEL ALGORITHM , 1997 .

[115]  James H. Liu NONLINEAR IMPULSIVE EVOLUTION EQUATIONS , 2004 .

[116]  Xiaozhe Hu,et al.  Corrigendum to: "Acceleration of a two-grid method for eigenvalue problems" , 2011, Math. Comput..

[117]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[118]  Yong-Kui Chang,et al.  Existence for impulsive neutral integrodifferential inclusions with nonlocal initial conditions via fractional operators , 2009 .

[119]  Dajun Guo,et al.  Extremal Solutions of Nonlinear Impulsive Integrodifferential Equations in Banach Spaces , 1993 .

[120]  Sotiris K. Ntouyas,et al.  Global existence for semilinear evolution integrodifferential equations with delay and nonlocal conditions , 1997 .

[121]  Yongxiang Li,et al.  Monotone iterative technique for addressing impulsive integro-differential equations in Banach spaces , 2007 .

[122]  Constantin Bacuta,et al.  Regularity estimates for solutions of the equations of linear elasticity in convex plane polygonal domains , 2003 .

[123]  Jin Liang,et al.  Nonlocal impulsive problems for nonlinear differential equations in Banach spaces , 2009, Math. Comput. Model..

[124]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[125]  B. Mercier,et al.  Eigenvalue approximation by mixed and hybrid methods , 1981 .

[126]  Yanping Lin,et al.  Semilinear integrodifferential equations with nonlocal Cauchy problem , 1996 .

[127]  Xinzhi Liu,et al.  Quasi-solutions of nonlinear impulsive equations in abstract cones , 1989 .

[128]  P. Lions The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .

[129]  Shuying Zhai,et al.  Investigations on two kinds of two-grid mixed finite element methods for the elliptic eigenvalue problem , 2012, Comput. Math. Appl..

[130]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[131]  JunHeng Qu,et al.  Soliton Solutions for Quasilinear Schrödinger Equations , 2013, J. Appl. Math..

[132]  Chun-Lei Tang,et al.  Periodic Solutions of Non-autonomous Second-Order Systems with γ-Quasisubadditive Potential , 1995 .

[133]  V. Lakshmikantham,et al.  Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space , 1991 .

[134]  Ó. JoãoMarcosdo,et al.  On a quasilinear nonhomogeneous elliptic equation with critical growth in R N , 2009 .

[135]  Liu Yang,et al.  The existence and multiplicity of solutions for an impulsive differential equation with two parameters via a variational method , 2010 .