Quantum Secure Direct Communication by Using Three-Dimensional Hyperentanglement

We propose two schemes for realizing quantum secure direct communication (QSDC) by using a set of ordered two-photon three-dimensional hyperentangled states entangled in two degrees of freedom (DOFs) as quantum information channels. In the first scheme, the photons from Bob to Alice are transmitted only once. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs single-photon two-DOF Bell bases measurements on her photons. This scheme has better security than former QSDC protocols. In the second scheme, Bob transmits photons to Alice twice. After insuring the security of the quantum channels, Bob encodes the secret message on his photons. Then Alice performs two-photon Bell bases measurements on each DOF. The scheme has more information capacity than former QSDC protocols.

[1]  Generation of modal- and path-entangled photons using a domain-engineered integrated optical waveguide device , 2011, 1106.5970.

[2]  Shi Rong-hua,et al.  Quantum Secret Sharing Based on Chinese Remainder Theorem , 2011 .

[3]  Bin Gu,et al.  Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel , 2011 .

[4]  Lixiang Chen,et al.  Spin-orbit-path hybrid Greenberger-Horne-Zeilinger entanglement and open-destination teleportation with multiple degrees of freedom , 2011 .

[5]  Tao Li,et al.  High-Capacity Quantum Secure Direct Communication Based on Quantum Hyperdense Coding with Hyperentanglement , 2011 .

[6]  Chun-Wei Yang,et al.  Fault tolerant two-step quantum secure direct communication protocol against collective noises , 2011 .

[7]  Hui Yan,et al.  Generation of narrow-band hyperentangled nondegenerate paired photons. , 2011, Physical review letters.

[8]  Ying Sun,et al.  High-efficient quantum key distribution based on hybrid entanglement , 2011 .

[9]  Shahram Mohammad Nejad,et al.  An error-free protocol for quantum entanglement distribution in long-distance quantum communication , 2011, 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010).

[10]  Zhang-Yin Wang,et al.  Quantum Secure Direct Communication and Quantum Sealed-Bid Auction with EPR Pairs , 2010 .

[11]  Kai Chen,et al.  Verifying genuine high-order entanglement. , 2010, Physical review letters.

[12]  王川,et al.  Faithful quantum secure direct communication protocol against collective noise , 2010 .

[13]  Y. Zhan,et al.  Generation of hyperentangled states between remote noninteracting atomic ions , 2010 .

[14]  Yuguang Yang,et al.  Quantum Secure Direct Communication with Authentication Expansion Using Single Photons , 2010 .

[15]  Yu-Bo Sheng,et al.  Complete hyperentangled-Bell-state analysis for quantum communication , 2010, 1103.0230.

[16]  Fuguo Deng,et al.  One-step deterministic polarization-entanglement purification using spatial entanglement , 2010, 1008.3509.

[17]  Zhang Ling-ling,et al.  Quantum Dialogue by Using Non-Symmetric Quantum Channel , 2010 .

[18]  S. Qin,et al.  Robust Quantum Secure Direct Communication over Collective Rotating Channel , 2010 .

[19]  S. Qin,et al.  Improving the quantum secure direct communication by entangled qutrits and entanglement swapping against intercept-and-resend attack , 2010 .

[20]  A Hierarchy of Nonlinear Lattice Soliton Equations and Its Darboux Transformation , 2010 .

[21]  S. Barnett,et al.  Angular two-photon interference and angular two-qubit states. , 2010, Physical review letters.

[22]  Qun-Yong Zhang,et al.  Quantum secure direct communication by entangled qutrits and entanglement swapping , 2009 .

[23]  Marco Barbieri,et al.  Simplifying quantum logic using higher-dimensional Hilbert spaces , 2009 .

[24]  G. Vallone,et al.  Hyperentanglement of two photons in three degrees of freedom , 2008, 0810.4461.

[25]  Qiaoyan Wen,et al.  Quantum secure direct communication with χ -type entangled states , 2008 .

[26]  P. Xu,et al.  Transforming spatial entanglement using a domain-engineering technique. , 2008, Physical review letters.

[27]  Jian-Wei Pan,et al.  Experimental demonstration of a hyper-entangled ten-qubit Schr\ , 2008, 0809.4277.

[28]  Yuan Hao,et al.  Robust Quantum Secure Direct Communication and Deterministic Secure Quantum Communication over Collective Dephasing Noisy Channel , 2008 .

[29]  Generation of high-flux hyperentangled photon pairs using a microstructure-fiber Sagnac interferometer , 2008 .

[30]  T. Wei,et al.  Beating the channel capacity limit for linear photonic superdense coding , 2008, 1009.5128.

[31]  Giuseppe Vallone,et al.  Active one-way quantum computation with two-photon four-qubit cluster states. , 2008, Physical review letters.

[32]  Wang Chuan,et al.  Quantum secure direct communication and deterministic secure quantum communication , 2007 .

[33]  Kai Chen,et al.  Experimental realization of one-way quantum computing with two-photon four-qubit cluster states. , 2007, Physical review letters.

[34]  H. Weinfurter,et al.  Experimental demonstration of four-party quantum secret sharing. , 2006, Physical review letters.

[35]  Fuguo Deng,et al.  Improving the security of secure direct communication based on the secret transmitting order of particles , 2006, quant-ph/0612016.

[36]  G. Vallone,et al.  Enhancing the violation of the einstein-podolsky-rosen local realism by quantum hyperentanglement. , 2006, Physical review letters.

[37]  Christian Kurtsiefer,et al.  Complete deterministic linear optics Bell state analysis. , 2006, Physical review letters.

[38]  Shou Zhang,et al.  Secure direct communication based on secret transmitting order of particles , 2006, quant-ph/0601119.

[39]  Q. Cai Eavesdropping on the two-way quantum communication protocols with invisible photons , 2005, quant-ph/0508002.

[40]  Marco Barbieri,et al.  Polarization-momentum hyperentangled states : Realization and characterization , 2005 .

[41]  N. Langford,et al.  Generation of hyperentangled photon pairs. , 2005, Physical review letters.

[42]  Fuguo Deng,et al.  Improving the security of multiparty quantum secret sharing against Trojan horse attack , 2005, quant-ph/0506194.

[43]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[44]  T. Felbinger,et al.  Comment on 'Secure direct communication with a quantum one-time pad' , 2004, quant-ph/0406115.

[45]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[46]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[47]  J. O'Brien,et al.  Measuring entangled qutrits and their use for quantum bit commitment. , 2003, Physical review letters.

[48]  Q. Cai The "ping-pong" protocol can be attacked without eavesdropping. , 2003, Physical review letters.

[49]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[50]  S. Walborn,et al.  Hyperentanglement-assisted Bell-state analysis , 2003, quant-ph/0307212.

[51]  A. Vaziri,et al.  Experimental two-photon, three-dimensional entanglement for quantum communication. , 2002, Physical review letters.

[52]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[53]  V. Scarani,et al.  Quantum cloning with an optical fiber amplifier. , 2002, Physical review letters.

[54]  Jian-Wei Pan,et al.  Polarization entanglement purification using spatial entanglement. , 2001, Physical review letters.

[55]  H. Weinfurter,et al.  Secure Communication with a Publicly Known Key , 2001, quant-ph/0111106.

[56]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[57]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography with 3-state systems. , 2000, Physical review letters.

[58]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[59]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[60]  H. Chau,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1998, Science.

[61]  Paul G. Kwiat,et al.  Hyper-entangled states , 1997 .