A multidimensional scaling approach to explore the behavior of a texture perception algorithm

Abstract.This paper presents a methodology for behavior characterization of an algorithm in terms of the parametric description of input images. To develop the work we have selected an algorithm which implements a model of texture perception and provides a texture representation. The approach is based on the definition of an input parametric texture space, where parameters are related to texton attributes. Multidimensional scaling provides a dimensional reduction of space of representation. It allows interpretation of the behavior of the algorithm in a low-dimensional space where points represent textures and distances represent dissimilarities between textures, preserving the metric of the algorithm representation in a monotonic sense. The resulting behavior space establishes the basis to construct a quantitative causal model of an algorithm.

[1]  Paul R. Cohen,et al.  Empirical methods for artificial intelligence , 1995, IEEE Expert.

[2]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. II , 1962 .

[3]  T. Papathomas Early vision and beyond , 1995 .

[4]  Jordi Vitrià,et al.  3/spl times/3 decomposition of circular structuring elements , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[5]  J. Graef,et al.  THE DETERMINATION OF THE UNDERLYING DIMENSIONALITY OF AN EMPIRICALLY OBTAINED MATRIX OF PROXIMITIES. , 1974, Multivariate behavioral research.

[6]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[7]  Tomaso Poggio,et al.  Computing texture boundaries from images , 1988, Nature.

[8]  R. Shepard,et al.  Toward a universal law of generalization for psychological science. , 1987, Science.

[9]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. I. , 1962 .

[10]  Luc Van Gool,et al.  Texture analysis Anno 1983 , 1985, Comput. Vis. Graph. Image Process..

[11]  R N Shepard,et al.  Multidimensional Scaling, Tree-Fitting, and Clustering , 1980, Science.

[12]  Dov Sagi,et al.  The psychophysics of texture segmentation , 1995 .

[13]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .

[14]  N. Graham,et al.  Effect of spatial scale and background luminance on the intensive and spatial nonlinearities in texture segregation , 1996, Vision Research.

[15]  P Perona,et al.  Preattentive texture discrimination with early vision mechanisms. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[16]  S. Edelman,et al.  On Similarity to Prototypes in 3D Object Representation , 1995 .

[17]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[18]  B. Julesz,et al.  Human factors and behavioral science: Textons, the fundamental elements in preattentive vision and perception of textures , 1983, The Bell System Technical Journal.

[19]  C. H. Chen,et al.  Handbook of Pattern Recognition and Computer Vision , 1993 .

[20]  I Spence,et al.  A TABLE OF EXPECTED STRESS VALUES FOR RANDOM RANKINGS IN NONMETRIC MULTIDIMENSIONAL SCALING. , 1973, Multivariate behavioral research.

[21]  Harry Wechsler,et al.  Texture analysis — a survey , 1980 .

[22]  J. Bergen,et al.  Computational Modeling of Visual Texture Segregation , 1991 .

[23]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .