Stochastic fatigue damage model for concrete under complex stress states

[1]  Jie Li,et al.  A two-scale stochastic damage model for concrete under fatigue loading , 2021 .

[2]  Li Jie,et al.  A physically motivated model for fatigue damage of concrete , 2018 .

[3]  Jie Li,et al.  Indentation tests based multi-scale random media modeling of concrete , 2018 .

[4]  Zdeněk P. Bažant,et al.  Size effect in Paris law and fatigue lifetimes for quasibrittle materials: Modified theory, experiments and micro-modeling , 2016 .

[5]  Jie Li,et al.  A rate-dependent stochastic damage–plasticity model for quasi-brittle materials , 2015 .

[6]  J. Labuz,et al.  Scaling of fatigue crack growth in rock , 2014 .

[7]  Martin Z. Bazant,et al.  Unified nano-mechanics based probabilistic theory of quasibrittle and brittle structures: I. Strength, static crack growth, lifetime and scaling , 2011 .

[8]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[9]  A. Carpinteri,et al.  A multifractal analysis of fatigue crack growth and its application to concrete , 2010 .

[10]  Xiaodan Ren,et al.  Stochastic damage model for concrete based on energy equivalent strain , 2009 .

[11]  Jeffrey J. Thomas,et al.  Composition and density of nanoscale calcium-silicate-hydrate in cement. , 2007, Nature materials.

[12]  Rui Faria,et al.  An energy release rate-based plastic-damage model for concrete , 2006 .

[13]  Surendra P. Shah,et al.  Fatigue response of concrete subjected to biaxial stresses in the compression-tension region , 1999 .

[14]  L. Kachanov,et al.  Rupture Time Under Creep Conditions , 1999 .

[15]  J. Oliver,et al.  A strain-based plastic viscous-damage model for massive concrete structures , 1998 .

[16]  Billie F. Spencer,et al.  Stochastic Damage Model for Brittle Materials Subjected to Monotonic Loading , 1996 .

[17]  Gilles Pijaudier-Cabot,et al.  From damage to fracture mechanics and conversely: A combined approach , 1996 .

[18]  Zdenek P. Bazant,et al.  Fatigue Fracture of High-Strength Concrete and Size Effect , 1993 .

[19]  Zdenek P. Bazant,et al.  Size Effect in Fatigue Fracture of Concrete , 1991 .

[20]  Ttc Hsu,et al.  BIAXIAL COMPRESSION FATIGUE AND DISCONTINUITY OF CONCRETE , 1988 .

[21]  J. Dougill,et al.  On stable progressively fracturing solids , 1976 .

[22]  Kurt H. Gerstle,et al.  Behavior of Concrete Under Biaxial Stresses , 1969 .

[23]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[24]  H. Daniels The statistical theory of the strength of bundles of threads. I , 1945, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[25]  Weiling Sun,et al.  Stochastic Harmonic Function Representation of Stochastic Processes , 2013 .

[26]  F. Ulm,et al.  The nanogranular nature of C–S–H , 2007 .

[27]  Zhang Qi-yun,et al.  Study of Stochastic Damage Constitutive Relationship for Concrete Material , 2001 .

[28]  F. Leckie A course on damage mechanics , 1998 .

[29]  J. Ju,et al.  On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects , 1989 .

[30]  J. Mazars A description of micro- and macroscale damage of concrete structures , 1986 .

[31]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[32]  Dusan Krajcinovic,et al.  Statistical aspects of the continuous damage theory , 1982 .