Impulsive perturbations in a periodic delay differential equation model of plankton allelopathy

In this paper, we consider the dynamic behavior of an impulsive delay differential equation model with the effects of interspecific allelopathic interaction. A good understanding of the permanence, extinction and the existence of positive periodic solutions is gained. It turns out that the impulsive controls play a crucial role in shaping the above dynamics of the system. Numerical simulations are presented to substantiate the analytical results.

[1]  Xianning Liu,et al.  Global dynamics of the periodic logistic system with periodic impulsive perturbations , 2004 .

[2]  A. Nicholson,et al.  The Balance of Animal Populations.—Part I. , 1935 .

[3]  K. Gopalsamy,et al.  Exponential stability of artificial neural networks with distributed delays and large impulses , 2008 .

[4]  Bing Liu,et al.  The dynamical behaviors of a Lotka–Volterra predator–prey model concerning integrated pest management ☆ , 2005 .

[5]  Jurang Yan,et al.  Existence and global attractivity of periodic solution for an impulsive delay differential equation with Allee effect , 2005 .

[6]  K. Deimling Nonlinear functional analysis , 1985 .

[7]  D. Bainov,et al.  Impulsive Differential Equations: Periodic Solutions and Applications , 1993 .

[8]  J. Chattopadhyay,et al.  A delay differential equations model of plankton allelopathy. , 1998, Mathematical biosciences.

[9]  Juan J. Nieto,et al.  Existence and global attractivity of positiveperiodic solution of periodic single-species impulsive Lotka-Volterra systems , 2004, Math. Comput. Model..

[10]  V. Lakshmikantham,et al.  Theory of Impulsive Differential Equations , 1989, Series in Modern Applied Mathematics.

[11]  R. Gaines,et al.  Coincidence Degree and Nonlinear Differential Equations , 1977 .

[12]  Joydev Chattopadhyay,et al.  Effect of toxic substances on a two-species competitive system , 1996 .

[13]  Juan J. Nieto,et al.  Complexity of a Delayed predator-prey Model with impulsive Harvest and Holling Type II Functional Response , 2008, Adv. Complex Syst..

[14]  Alberto d'Onofrio,et al.  On pulse vaccination strategy in the SIR epidemic model with vertical transmission , 2005, Appl. Math. Lett..

[15]  Sandip Banerjee,et al.  Time lags can control algal bloom in two harmful phytoplankton-zooplankton system , 2007, Appl. Math. Comput..

[16]  R. Barber,et al.  MODIFICATION OF PHYTOPLANKTON GROWTH BY EXCRETED COMPOUNDS IN LOW‐DENSITY POPULATIONS 1 , 1975 .

[17]  E. Donk,et al.  Macrophyte-phytoplankton interactions: the relative importance of allelopathy versus other factors , 2007 .

[18]  Paul Georgescu,et al.  AN IMPULSIVE PREDATOR-PREY SYSTEM WITH BEDDINGTON-DEANGELIS FUNCTIONAL RESPONSE AND TIME DELAY , 2008 .

[19]  J. Nieto,et al.  Impulsive periodic boundary value problems of first-order differential equations , 2007 .

[20]  E. L. Rice,et al.  Allelopathic interactions among algae , 1979, Journal of Chemical Ecology.

[21]  Dingbian Qian,et al.  Periodic solutions for ordinary difierential equations with sub-linear impulsive efiects , 2005 .

[22]  Sanyi Tang,et al.  Multiple attractors in stage-structured population models with birth pulses , 2003, Bulletin of mathematical biology.

[23]  Jitka Laitochová,et al.  Dynamic behaviors of a delay differential equation model of plankton allelopathy , 2007 .

[24]  Zhien Ma,et al.  Periodic solutions for delay differential equations model of plankton allelopathy , 2002 .

[25]  Meili Li,et al.  Periodic solutions for impulsive delay differential equations in the control model of plankton allelopathy , 2007 .

[26]  Juan J. Nieto,et al.  Boundary value problems for a class of impulsive functional equations , 2008, Comput. Math. Appl..

[27]  Lansun Chen,et al.  A delayed epidemic model with stage-structure and pulses for pest management strategy , 2008 .

[28]  P. Underhill,et al.  INTERACTION (ALLELOPATHY) BETWEEN MARINE DIATOMS: THALASSIOSIRA PSEUDONANA AND PHAEODACTYLUM TRICORNUTUM 1 , 1979 .

[29]  A. Zafer,et al.  The control of boundary value problems for quasilinear impulsive integro-differential equations , 2002 .

[30]  M. Benchohra,et al.  Impulsive differential equations and inclusions , 2006 .

[31]  Pejman Rohani,et al.  Dynamics of infectious diseases and pulse vaccination: Teasing apart the embedded resonance effects , 2006 .

[32]  Lansun Chen,et al.  Complex dynamics of a chemostat with variable yield and periodically impulsive perturbation on the substrate , 2008 .

[33]  John Maynard Smith Models in ecology , 1974 .

[34]  Lansun Chen,et al.  The dynamics of an impulsive delay predator-prey model with variable coefficients , 2008, Appl. Math. Comput..

[35]  Ronghua Tan,et al.  Modeling and Analysis of a Delayed Competitive System With Impulsive Perturbations , 2008 .

[36]  G. Pinto,et al.  Allelopathy and competition between Chlorella vulgaris and Pseudokirchneriella subcapitata: Experiments and mathematical model , 2007 .